
Please visit

the Web sites

of our

advertising

partners

who make it

possible for us

to bring you this

Digital Edition

(PDF) of JDJ

ADVERTISER URL PH PG
ADVERTISER INDEX

4TH PASS WWW.4THPASS.COM 877-484-7277 63
AJILE SYSTEMS WWW.AJILE.COM 408-557-0829 100

ALLAIRE CORPORATION WWW.ALLAIRE.COM/DOWNLOAD 888-939-2545 21
AMAZON.COM WWW.AMAZON.COM/JAVA 37

APPEAL VIRTUAL MACHINES WWW.JROCKIT.COM 468-402-2873 61
BEA WWW.BEA.COM 800-817-4BEA 9

BULL WWW.BULL.COM 17
CAPE CLEAR WWW.CAPECLEAR.COM 353-1-241-9900 25

CAREER OPPORTUNITY ADVERTISERS 800-846-7591 102,118-133
CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFTWARE.COM 888-862-9898 35

CLOUDSCAPE WWW.CLOUDSCAPE.COM 510-239-1900 12-13
COMPUTERWORK.COM WWW.COMPUTERWORK.COM 800-691-8413 99

COMPUWARE WWW.COMPUWARE.COM/NUMEGA 800-4-NUMEGA 19
ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/ELIXIRIDE 65 532-4300 57

FIORANO WWW.FIORANO.COM 800-663-3621 65
FLASHLINE.COM, INC. WWW.FLASHLINE.COM 800-259-1961 49

GEMSTONE WWW.GEMSTONE.COM/WELCOME 503-533-3000 11
HOTDISPATCH.COM WWW.HOTDISPATCH.COM 650-234-9752 27
IAM CONSULTING WWW.IAMX.COM 212-580-2700 73

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732-235-0137 55,98
INTUITIVE SYSTEMS, INC WWW.OPTIMIZEIT.COM 408-245-8540 47
IONA TECHNOLOGIES WWW.IONA.COM 800-672-4948 79

JAVACON2000 WWW.JAVACON2000.COM 84-85
JAVACON2000 WWW.JAVACON2000.COM 103-117

JDJ READERS’ CHOICE AWARDS WWW.SYS-CON.COM 86
JDJ STORE.COM WWW.JDJSTORE.COM 888-303-JAVA 01

JV SEARCH WWW.JVSEARCH.COM 20
KL GROUP INC WWW.KLGROUP.COM/POWER 888-361-3264 15
KL GROUP INC WWW.KLGROUP.COM/COURSE 888-361-3264 81
KL GROUP INC WWW.KLGROUP.COM/GREAT 888-361-3264 136
MACROMEDIA WWW.MACROMEDIA.COM/ULTRADEV 415-252-2000 32-33

METAMATA, INC. WWW.METAMATA.COM 510-796-0915 77
NETDIVE.COM WWW.NETDIVE.COM 415-981-4546 95
NEW ATLANTA WWW.SERVLETEXEC.COM 800-GO-UNIFY 53

NO MAGIC WWW.MAGICDRAW.COM 303-914-8074 7
NORTHWOODS SOFTWARE CORPORATION WWW.NWOODS.COM 800-226-4662 70

OBJECTWAVE WWW.OBJECTWAVE.COM 321-269-0111 70
OOP.COM WWW.OOP.COM 877-667-6070 68-69

PARASOFT WWW.PARASOFT.COM 888-305-0041 83
PERSISTENCE WWW.PERSISTENCE.COM 650-372-3600 29

PRAMATI WWW.PRAMATI.COM 877-667-PRAMATI 71
PROGRESS SOFTWARE WWW.SONICMQ.COM/AD11.HTM 800-989-3773 2

PROTOVIEW WWW.PROTOVIEW.COM 800-231-8588 3,135
QUEST SOFTWARE WWW.QUEST.COM 949-754-8000 39

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888-769-9898 96
SEGUE SOFTWARE WWW.SEGUE.COM 800-287-1329 4
SIC CORPORATION WWW.SIC21.COM 822.227.398801 75

SLANGSOFT WWW.SLANGSOFT.COM 972-2-648-2424 43
SOFTWARE AG WWW.SOFTWAREAG.COM/BOLERO 925-472-4900 67

STARBASE WWW.STARBASE.COM 888-STAR700 93
SYBASE WWW.SYBASE.COM/PRODUCTS/SERVER 800-8-SYBASE 45

SYNTION AG WWW.SYNTION.COM 97
THINWEB TECHNOLOGIES WWW.THINWEB.COM 877-THINWEB 51

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800-884-8665 23
TOGETHERSOFT CORPORATION WWW.TOGETHERSOFT.COM 919-833-5550 6

UNIFY CORPORATION WWW.EWAVECOMMERCE.COM 800-GO UNIFY 59
VISICOMP WWW.VISICOMP.COM/JDJ7 831-335-1820 31
VISUALIZE WWW.VISUALIZEINC.COM 602-861-0999 20
WEBVISION WWW.WEBVISION.COM 800-531-5057 91

WIRELESS DEVELOPER WWW.WIRELESSDEVELOPER.COM 800-594-5102 100
YOUCENTRIC WWW.YOUCENTRIC.COM/NOBRAINER 888-462-6703 89

ZUCOTTO WWW.ZUCOTTO.COM 613-789-0090 41

Feature: CORBA Components Jon Siegel
Taking EJBs to the next level 8

EJB Home: Transactions and Exception Handling Jason Westra
Create more fault-tolerant code in your new EJB applications 16

Feature: Introducing JavaSpaces Sanjay Mahapatra
A new and futuristic paradigm far from traditional
invocation of methods on remote objects 28

Java Techniques: Encoded Streams Mike Jasnowski
Read and write encoded data with Java I/O streams 36

Feature: Implementing Fowler’s Dr. Sara Stoeklin &
Analysis Validator Pattern in Java Dr. Clement Allen
Reusable self-validation GUI components increase developer productivity 44

JDBC Basics: Programming with Databases Robert J. Brunner
Using Java JDBC – a must-have tool for your programming toolbox 56

App Building: Challenges of Developing Peter Varhol

Distributed Java Applications Build reliable,
high-performance applications and components 72

Feature: Understanding Workflow An introduction to Bobby Woolf
workflow and workflow management systems 96

September 2000 Volume:5 Issue:9

The World’s Leading Java Resource

TM

FINALE: A SQLJ MAGIC SHOW PART3
by Ekkehard
Rohwedder
PAGE 78

by Kristian Cibulskis
page 62

SYS-CON
MEDIA

Java COM

From the Editor
Source Notes

by Sean Rhody pg. 5

Guest Editorial
Enterprise Development

by Joe Menard pg. 7

Industry Watch
What’s It All About?

by Alan Williamson pg. 24

Interview
Paul Chambers

of GemStone Systems pg.88

Product Reviews
Ensemble Streams 3.2

by Ensemble Systems pg.84
JSmartGrid 1.0

by Eliad Technologies pg.134

November 12-15, 2000

December 3-5, 2000
Announcing...

Facets

Component Facet Receptacles

Event Sink

Event SourceAttributes

Party
ObservationPhenomenon:

ObservationType

Fill out
Claim
Form DENIED

AP
PROVED

Approve
Claim

Send
Check

Send Reject
Letter

Approval

THIS IS
UNENCODED

DATA

E
N

C
O

D
E

R

VisualAge Repository
Developing Web

Applications
by Anita Huang &
Tim deBoer pg.92

5SEPTEMBER 2000

Java COM

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI, KIM POLESE,
SEAN RHODY, RICK ROSS, AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
MANAGING EDITOR: CHERYL VAN SISE
ASSOCIATE EDITOR: NANCY VALENTINE

EDITORIAL ASSISTANT: JAMIE MATUSOW
EDITORIAL CONSULTANT: SCOTT DAVISON

TECHNICAL EDITOR: BAHADIR KARUV
PRODUCT REVIEW EDITOR: ED ZEBROWSKI

INDUSTRY NEWS EDITOR: ALAN WILLIAMSON
E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
CLEMENT ALLEN, GREG BOLLELLA, ROBERT BRUNNER,

KRISTIAN CIBULSKIS, TIM DEBOER, BRUNO Y. DECAUDIN, PETER HAGGAR,
ANITA HUANG, MIKE JASNOWSKI, SANJAY MAHAPATRA, JOE MENARD,

JIM MILBERY, SEAN RHODY, EKKEHARD ROHWEDDER,
SHERRY SHAVOR, JON SIEGEL, SARA STOECKLIN, PETER VARHOL,

JASON WESTRA, ALAN WILLIAMSON, BOBBY WOOLF

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
GROUP PUBLISHER: LISE ST. AMANT

COMPTROLLER: BRUCE MILLER
ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA

MEGAN RING
JDJSTORE.COM: AMANDA MOSKOWITZ

ADVERTISING ASSISTANT: CHRISTINE RUSSELL
ADVERTISING INTERN: ALISON NOVICK
GRAPHIC DESIGNERS: ABRAHAM ADDO

CATHRYN BURAK
GRAPHIC DESIGN INTERNS: AARATHI VENKATARAMAN

LOUIS F. CUFFARI
WEBMASTER: ROBERT DIAMOND

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB DESIGNERS: STEPHEN KILMURRAY

GINA ALAYYAN
SYS-CON EVENTS MANAGER: ANTHONY D. SPITZER

CUSTOMER SERVICE: ELLEN MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

135 CHESTNUT RIDGE ROAD, MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

SUBSCRIBE@SYS-CON.COM
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)

is published monthly (12 times a year) for $49.00 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Periodicals Postage rates are paid at
Montvale, NJ 07645 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T
Copyright © 2000 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

730 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
MEDIA

SEAN RHODY, EDITOR-IN-CHIEF

Y
ears ago, when I was in college, I decided to pursue a minor in music to offset the insan-
ity of getting a degree in physics. I spent a bit of time learning the key signatures, and
how to transpose music written in one key to another, usually simpler, key (since I’m not
much of a musician). I’m not sure how many sharps are in the key of C sharp at this
point, but I think it had to be one of the more difficult keys to read, if not play.

I’ve received a good deal of mail and other input regarding Microsoft’s new C Sharp spec-
ification, including some very interesting comparisons from one reader who outlined the sim-
ilarities between C Sharp and Java in detail, including keyword counts (with synonyms even).
He made his point pretty easily; it’s not hard to see that C Sharp looks a great deal like Java.

Now, Microsoft is proclaiming this as the next step in the evolution of the C language. C++
added object-oriented programming to C, although it’s still possible to write completely ordi-
nary procedural code with C++. C++ also brought with it the ugly concept of multiple inheri-
tance. Granted there are times when the ability to treat an object as more than one class,
depending on need, is important. It’s just that the C++
approach is one of the ugliest ways to do it I’ve ever seen. Add
to that the memory management jungle that exists within
C/C++ and it’s easy to understand why Java appeals to pro-
grammers who want to be productive.

C Sharp promises to provide a new path for C. As if we need-
ed another one. It’s simple to see that C Sharp is aimed square-
ly at the Java community. This new language has the same syn-
tax as Java, which is understandable since Java evolved largely
out of C/C++. It also removes the concept of multiple inheri-
tance, same as Java. And it does away with memory management and provides garbage col-
lection as well, all similar to Java.

And we all can see where this is going. After years of trying unsuccessfully to co-opt the
Java standard due to its overwhelming need to control and dominate, Microsoft has finally
acknowledged that it can’t break this market. So the egomaniacs in Redmond have decided to
create a new language that will look like Java, but not have any ties to the standard.

Like most people, I use Microsoft products every day. I’m writing this in Microsoft Word on
a computer that runs Windows NT. I use Internet Explorer. The desktop is still important. I
won’t rehash the tired arguments about Microsoft domination; I know we all know them.
Despite the importance of the desktop, there are clearly other arenas that have evolved
around or even in spite of Windows. There’s Linux, Internet Appliances, Palm Pilots, Wireless
PDAs – the list grows daily. Personal computing has grown to be more than just a PC. And the
language that’s driving that revolution is Java.

So the entrance of this new language doesn’t bother me the way it might have several years
ago. Java has a clear edge in the marketplace as the language of the Internet. It runs Web sites
everywhere, powering B2C, B2B and other e-commerce applications throughout the world.
JSP has truly helped bring Java to the browser, and EJB has standardized the way we write dis-
tributed applications.

C Sharp won’t change that. About all that it will do is further muddy the story on Java from
Microsoft. Fortunately, there are numerous options for Java VMs from other sources. While it
would be interesting to see a strong VM from Microsoft, in point of fact it’s largely irrelevant.
C Sharp signals Microsoft’s exit from the Java world, on a sour note. But it means business as
usual for those who use Java on Microsoft products.

F R O M T H E E D I T O R

sean@sys-con.com
AUTHOR BIO

Sean Rhody is editor-in-chief of Java Developer's Journal.
He is also a respected industry expert and a consuitant with a leading Internet service company.

Source Notes

cc

7SEPTEMBER 2000

Java COM

WRITTEN BY JOE MENARD
J D J G U E S T E D I T O R I A L

Enterprise Development
– Beyond the Java IDE

AUTHOR BIO
Joe Menard, CEO of WebGain Inc., has 20 years’ experience in general management, marketing, sales and product development.
He holds a BS in electrical engineering from Worcester Polytechnic Institute and an MBA from Babson College.

joseph.menard@webgain.com

Are you part of a small team that’s building e-business systems in one- to three-month cycles,
creating and reusing enterprise business components while integrating disparate platforms?

Are you wondering if the long-heralded era of component-based application assembly is going
to arrive within your lifetime? Are you waiting for the day when you can select from a wide array
of prefabricated, generalized, “certified compatible” e-biz and e-com components?

Does your vision of the perfect enterprise development environment extend beyond your cur-
rent Java IDE? Are you tired of Java IDEs that don’t support important Java standards, UML or
object/relational mapping, or don’t integrate well with other Web tools?

Does your IT organization support a mixed environment of application servers from iPlanet,
IBM, BEA and others while eschewing standardization on any one of them in the near future?

If you answered “yes” to any of the above, you reflect today’s professional Java developer, based
on our latest round of research with over 100 enterprise Java developers.

Some of the main points from our research:
• Tools integration remains the main sticking point for Java developers. They’re either poorly

integrated or the tool suites lack best-of-breed point solutions.
• Developers want IDEs that stay in tight step with Sun’s J2EE technical standard, including JSP

support.
• Enterprise shops want complementary integration between XML and Java.
• Everyone’s building reusable object- or component-based frameworks. Many say that’s the

“strategic direction” their application architectures need to take to go forward.
• There’s a growing trend to capture business requirements in UML models early in the development

life cycle. Developers want richer, easier and better integrated UML modeling facilities.
• Most shops are targeting multiple application servers, databases and operating systems – from

the S/390 on down to Windows NT/2000.
• Most shops are targeting multiple SQL databases. Developers want richer and easier object-

relational component-based mapping tools.

Given this feedback, it’s clear that the challenges faced by enterprise developers today overtax
the capabilities of even the best Java IDEs. What’s needed is a new approach to enterprise devel-
opment, something beyond the traditional Java IDE that integrates best-of-breed life-cycle tools,
Web technologies and Java application servers – a comprehensive, integrated system that spans
UI development to database persistence.

Over the past six months WebGain has acquired, licensed and integrated key development
technologies as part of our flagship product, WebGain Studio. Developers should spend their time
building applications, not evaluating, integrating and testing tools. A solution is needed that inte-
grates best-of-breed technologies and works seamlessly with existing Web standards, databases,
OS platforms and Java application servers, and that includes integrated modeling.

To develop EJBs efficiently, fast and easy UML modeling is evolving as a requirement. The inte-
gration between the Java and UML environments is crucial to ensure that the code and models are
always synchronized.

The solution should also include an integrated object-relational mapping technology that
eliminates tedious manual coding associated with the mapping of objects to relational databases,
and an integrated HTML and JSP environment to streamline the development of attractive, cus-
tomized interfaces to end users.

According to our research, these solutions are what Java developers want. What enterprises
need goes beyond that to include simple application assembly so the power of Java can be used
by non-Java programmers and business analysts. This addresses both time-to-market considera-
tions and a shortage of skilled Java resources. New application assembly technology recently
acquired by WebGain will soon make that possibility a reality.

Given all this, what choices does a Java developer have to create that application in a month?
They go well beyond the IDE…to integrated suites that allow easier development from the browser
to the database, that allow application modeling and that ultimately allow simple and easy applica-
tion assembly on multiple application servers. At WebGain we’re close to being there.

Java COM

8 SEPTEMBER 2000

I
ncreasingly, business applications are evolving into a client side that

interacts with the user, and a server side that stores and retrieves data

and manipulates it in various ways. The client side may run on a

number of different hardware types including telephones, pagers and

handhelds, in addition to the usual assortment of desktop and laptop

computers. The intricacies of dealing with this assortment of client types

from a single server would make a good article but will have to wait for

another issue, because our subject today is the server side.

Responsible for satisfying requests from all of these client types, the
server side is the key to success in e-business. But, unlike even the relative
simplicity of years past, today’s server side must integrate many functions
and has grown increasingly complex as a result. Customers expect even a
simple e-commerce sales application to check stock levels and tell them –
truthfully! – whether or not their item is available today. Then they expect
the application to interact with bookkeeping to charge their credit card and
with shipping to set up their order. After they receive an e-mail confirma-
tion with their order number, they’ll expect to punch it into an Order Sta-
tus Web page and find out if their stuff has shipped yet, and then to retrieve
a tracking number that lets them follow up with the delivery service as their
package wends its way from a warehouse to their house.

Taking
EJBs
to the
Next
Level

Taking
EJBs
to the
Next
Level

CORBA
COMPONENTS:

F O C U S

WRITTEN BY JON SIEGEL

This article is based, in part, on Chapter 5 of the book CORBA 3
Fundamentals and Programming, by Jon Siegel (John Wiley &
Sons). Published by permission of OMG and the author. Check
out Chapter 5 for more on the CCM, and a miniprogramming
example contributed by the authors of the CCM specification.

9SEPTEMBER 2000

Java COM

Clearly, this assortment of functionality is too complex to run on a
single server. These days it takes a number of servers, each typically load-
balanced on several to many computers, to provide the service level
required by even a medium-sized enterprise. This makes the server
problem inherently distributed. In addition, a server must have these
four essential characteristics for businesses to rely on it:
• Scalability: A server must perform robustly and deliver the same good

performance even when (or, perhaps, especially when) heavily loaded
– financial trading applications need to handle the days when the
markets swing way up or down and everyone wants to get in or out of
positions; travel reservations systems have to handle the load when
bad weather over half the country cancels flights and everyone needs
new reservations.

• Transactionality: Business transactions, once completed, must be
reliably committed to persistent storage and immediately become vis-
ible to every client. A trader must be allowed to sell his stock in XYZ
company only once, and the last seat on the last flight to San Francis-
co must be assigned to only one traveler.

• Reliability: When the client side crashes, only one person notices.
When your server crashes, every user notices. If your site is big
enough, the outage becomes a headline in The Wall Street Journal and
even more people notice. The ideal server never stops running – not
for crashes, nor for upgrades of hardware, operating systems or even
applications.

• Security: It doesn’t matter whether you’re buying books, bonds or
seats – security is essential. We don’t have to say why; you already
know.

The first product tailored to this type of application was the transac-
tion monitor, or TM. Based on transaction processing systems, TMs
added scalability and robustness to business computing. But they were
more of a genre than standards-based software, and each vendor’s prod-
uct used its own proprietary interfaces to provide essentially the same
service as the other vendors’.

As client load increased the need for servers with these character-
istics, advances in software architecture provided better ways to build
them. Server-side infrastructure products combined resource con-
trol, load balancing and redundancy techniques in various ways,
many using object-oriented techniques, until finally a number of
standardized architectures emerged. We’ll start with one you may
already be familiar with – Enterprise JavaBeans (EJBs) – and see how
the OMG has extended it into the CORBA Component Model (CCM).
EJB is a good place to start because CCM is a superset of EJB, extend-
ed in two directions: programming language coverage and features,
as we’ll see.

Architectural Basis
Before components, it took a lot of skill and technical know-how to

code a server application with the characteristics we listed – scalability,
transactionality, reliability and security. For example, even if you had a
TM-based infrastructure, you had to begin and end each transaction in
hard code. This forced programmers to acquire a set of server–pro-
grammer skills above and beyond the knowledge they needed to code
the business logic that was, after all, the reason the server was being
built.

In the new server component architectures, in contrast, scalability,
transactionality, reliability and security have become runtime character-
istics of the system rather than the coded-in properties of any individual
part. They’re built into the component infrastructure, which provides
them to every component instance as a service at runtime, through stan-
dardized interfaces. You buy a component system with development and
runtime parts. Your system administrator installs the runtime, which
includes a transaction-processing system, security, load balancing and
possibly provisions for fault-tolerant operation. Components running in
this environment automatically become scalable, transactional, reliable
and secure.

Java COM

10 SEPTEMBER 2000

After they’ve been built using the development environment, assem-
bled into an application and configured properly (more on this coming
up), components are installed in, and run in, a container whose stan-
dardized interfaces communicate between the environment and the
component implementation. The container manages component
instances’ life cycle (creation and destruction) and resource control
(activation and passivation), and provides infrastructure services includ-
ing state persistence and transactionality via standardized interfaces.

In contrast to client-component interactions, which may be (and,
virtually always will be) remote, component-container interactions
must be local – that is, the container and component instance must
reside on the same physical machine. The EJB 1.1 specification doesn’t
say much about load balancing, but we know that multimachine EJB
servers are available from several vendors; the CCM specifically allows
containers to span machines for load-balancing purposes.

Let’s look at how EJB (and, looking ahead, the CCM) provides the four
capabilities we listed:
• Scalability: This is provided mainly by server resource control. EJB

instances don’t run constantly; they may be passivated by their con-
tainer and their memory resources reclaimed when idle, and activated
automatically when invoked. (CCM uses the POA for this.) Additional
scalability is provided by load-balancing techniques, although these
aren’t standardized by EJB. (Load balancing in CCM is supported by
IIOP features that we won’t detail here.)

• Transactionality: Both EJB and CCM runtimes include a transaction-
processing system that provides two-phase commit and rollback
behavior and all the other features of TP. You don’t have to code trans-
actionality into your EJBs or CCMs – you can get the behavior just by
specifying it in your deployment descriptor files (container-managed
transaction demarcation). Alternatively, you can code the beginning
and ending of transactions in your components if you wish (bean- or
component-managed transaction demarcation).

• Reliability: Although the EJB specification doesn’t contain any explic-
it provisions for reliability, EJBs’ encapsulation lets vendors build
redundancy and other fault-tolerant features into their runtime.
(CORBA has a separate fault-tolerance specification that can be
applied to a CCM environment.)

• Security: The EJB 1.1 specification defines security functionality and a
number of security interfaces. If you don’t want to code security into
your application, you can omit the calls and let the application assem-
bler and deployer set security policies in configuration files. All secu-
rity functionality resides in the container, of course. (CCM uses the
same structure with CORBA security interfaces.)

Building an EJB Server and Application
Both the EJB and CCM specifications divide the creation and deploy-

ment of a server application into roles. We’ll present the six roles described
in the EJB specification; differences between these and the corresponding
CCM roles are subtle enough that we don’t have to discuss them separate-
ly. The first two roles are extremely technical, since these players create the
development and runtime environments. These designers and program-
mers program transactionality, scalability, reliability and security into a
product that can be used by any business to create applications that gain
these desirable attributes from the system that runs them. They are:
1. Server provider: This player provides a development and runtime

environment that is transactional, reliable, scalable and secure. It
need not conform to any of the EJB interfaces, however – in fact, many
TM suppliers could fill this role.

2. Container provider: This player builds the container. On the outside,
the container interacts with the server using its proprietary interfaces.
On the inside, the container provides the standardized EJB function-
ality to the enterprise beans installed within it through the interfaces
defined in the specification. This player must also provide configura-
tion, installation and runtime support.

Freed by the container architecture from the need to program tech-
nical details, domain business experts can now step in and play roles 3

and 4. The application they produce will then combine their best busi-
ness logic with the enterprise qualities that the server and container
providers built into the base system. These business roles are:
3. Enterprise bean (or component) provider: This person is typically an

application domain expert. Because the container provides scalabili-
ty, transactionality, reliability and security, and the architecture allows
for transparent distribution, he or she doesn’t have to be an expert in
these (or any other) system-level programming techniques. Still, this
person should understand reusability enough to produce EJBs that
can be used in a range of applications.

4. Application assembler: This person assembles the coded enterprise
beans into an application. Sometimes the provider and the assembler
will be the same person, especially for applications written from
scratch with no (or little) reuse of previously developed beans. In pro-
jects that reuse beans, the assembler’s role is to put together an appli-
cation that combines EJBs from multiple sources.

The architecture carries the division-of-labor principle one step
beyond what we’ve described so far. By dividing application creation
into two steps – bean provider and application assembler – it puts into
place the foundation of a component marketplace where multiple sup-
plier companies develop independent components that can later be
assembled into multiple applications to fit most precisely the needs of
the end user.
5. Application deployer: This person takes one or more ejb-jar files and

deploys and configures them so that all references are resolved.
6. System administrator: This is the person who makes sure that every-

thing runs, and continues to run, as the users take advantage of every-
thing players one through five have created.

Some Technical Details
Four categories of EJBs allow developers to fine-tune resource man-

agement; these carry through without much change into the CCM, as
we’ll soon see. There are two types of session beans, which don’t have
identity and can be used by only one client: stateless and stateful. The
former can only be called once. They do their thing on that one call,
using only data that you’ve supplied as input arguments, and may be
considered destroyed after the call completes. Stateful session beans, on
the other hand, are conversational; they maintain their state from one
call to the next, but typically don’t store any of it persistently in the data-
base.

There are also two types of entity beans, which have identity and
can be registered in JNDI, or whatever naming service you have, and
used by multiple clients. They typically represent entities in your data-
base, adding whatever functionality you program into them. EJB
divides this category into beans with container-managed and self-
managed persistence. CCM divides this category into Process and Enti-
ty component types, differing in the way instances are identified; both
of these types let you choose between container-managed and self-
managed persistence.

EJB Homes add classlike functionality to the environment. Each type
has a home, which provides at least its create operation; for entity beans
the home also provides a find operation using the identity and a table of
instances that the runtime maintains. This concept carries over into
CCM.

Distribution is provided by RMI and, increasingly (since Sun has just
made this a requirement in the new EJB 2.0 draft specification), by RMI-
IIOP. Since the bean-container relationship is a local one, only client-
bean (and client-home) interaction goes over the network.

And Now, to CORBA
OMG members, working closely with Sun’s Java people, wrote the

CCM specification to work closely with EJBs. How closely? The specifica-
tion defines two levels of components. Basic-level CCM components
have the same characteristics as revision 1.1 EJBs, except that their inter-

13SEPTEMBER 2000

Java COM

faces are defined in OMG IDL and the components themselves may
therefore be written in any mapped programming language, not just
Java. That’s why we discussed EJBs in such detail. Extended-level com-
ponents have additional features. We like these features a lot, and think
that the extended CCM environment will be especially productive.

Before we go off into the features of extended CCMs, however, let’s
take a closer look at the architectural advantages we get from the tying of
basic CCMs to EJBs. Remember that assembly step – the one where we
built an application from a bunch of different components? Typically, a
final server-side application will consist of multiple component types
that call each other to get the entire job done. Each provides a subset of
the application’s functionality. In spite of their differences, the common-
ality of CCMs and EJBs lets them also call each other. (This will require a
bridge, but only an extremely thin and efficient one due to the com-
monality of the models.) The bottom line is, when we assemble an appli-
cation, we can use all of the components in our library – EJBs and basic
CCMs together. Configuration files tell our system how to direct calls
from one environment to another.

This architectural convergence adds CORBA’s multilanguage capabil-
ity to EJBs, allowing us to build components in whatever languages we
need (C++ comes to mind right away) in addition to Java, and assemble
them into an application along with our EJBs. EJB programmers can
contribute to the libraries of a multilanguage environment without hav-
ing to learn anything new, while CORBA programmers build compo-
nents that can be used with the substantial libraries of EJBs, written by
programmers who never learned to work in CORBA.

CCM Foundations
CCM’s’ interfaces are defined in OMG IDL, extended by the CCM

specification to include new keywords including (no surprise here) com-
ponent. IDL separates interface from implementation for CCMs just as it
does for CORBA objects, transparently extending the CCM to the multi-
language CORBA environment. One caveat we hear from people who
like the technical aspects of EJBs is, “But it’s a single-language environ-
ment!” Whether you want to use other languages available today or are
worried about the language that will come along sometime in the future
and replace Java, the compatibility of EJBs and CCMs should set your
mind at ease – on this score, anyway.

The CCM container is a specialized CORBA POA (portable object
adapter). Designed to support scalable servers, the POA architecture
allows an application to set policies that control (among other things)
activation/passivation patterns for the executing code and data that
constitute a CCM instance, which, by the way, is called a servant. In
terms of resource control, a POA is more flexible than an EJB container,
able to support several hundred patterns of instance activation/passiva-
tion defined by combinations of seven policy types.

This is our first sighting of a pattern that carries through all of the
CCM. In much of CORBA there is a tremendous amount of flexibility,
which requires a fair amount of technical knowledge to program. In the
CCM, however, the pattern is to wrap these CORBA features in a layer
that exposes a simpler, higher-level interface with fewer choices. This
makes it easy for business-level developers to pick the right one, and lets
the service provide the behavior using generated code. In many parts of
CCM the coding required for a service is reduced to zero for developers
who are willing to accept default behavior; for example, persistence,
transactionality and security all work this way. If you love CORBA but feel
intimidated by the programming, CCM is the environment for you!

So, instead of the hundreds of instance activation patterns available
to a POA programmer, a CCM programmer gets a choice of four and
they’re patterned on the EJBs we just examined. There are two variants
with nonpersistent component references: the service component,
which corresponds to a stateless session EJB, and the session compo-
nent, which corresponds to a stateful session EJB.

The two CCM types with persistent (and therefore sharable) refer-
ences don’t correspond directly to the two EJB entity types even though
one uses that name. Persistence, provided by OMG’s new Persistent State
Service (PSS), may be controlled by either the component or the con-

tainer for either of these types. The Process component lacks a key find-
able via its Home component while the Entity component has this key.
Lacking a key, the Process component typically represents a process with
a beginning and an end, one that may be interrupted and restarted later:
applying for a mortgage, opening a bank account or shopping (where
the shopping cart would be a Process component that lives only for the
duration of a single shopping trip). Having a key and therefore retriev-
able by any client, the Entity component well represents permanent
constructs, including the mortgage or bank account that we created with
our Process components, or a Customer, or whatever.

With this, we leave the basic components behind and enter the
extended world.

Multiple Interfaces, Navigation, Segmented Persistence
Figure 1 shows an extended CORBA component with the four inter-

face types that it uses to communicate in standard ways with the world.
(There’s a separate container-centric view that we won’t cover because of
its similarity to EJBs.)

Component is a new CORBA type specifically defined to support mul-
tiple interfaces and navigation among them. The multiple interfaces of a
CCM are termed facets. The CCM infrastructure takes care of all the nav-
igation, generating both the additional IDL operations and the code that
supports them. Clients can navigate from any of a component’s facets to
its main facet, where they can get a list of all supported facets – in many
ways, a CORBA analog for IUnknown. Or, if a client already knows where
it wants to go, it can navigate from any facet directly to any other one.
Extending this concept is segmented persistence, in which the unit of
activation/passivation is the facet and its associated code and data,
instead of the entire component.

Attributes and Configuration
CCMs may be configured at installation. In a component market-

place this gives a single CCM product the flexibility to fit into multiple
application assemblies with varying requirements (as long as they don’t
vary too much!). Configuration is accomplished by setting values of
attributes (see Figure 1) at installation time. Once this is complete, a call
to configuration_complete freezes the configuration and enables calls to
the CCM’s facets.

Receptacles
Receptacles (see Figure 1) are the client-side interfaces that a CCM

uses to invoke operations on other CCMs, analogous to the ejb-link fea-
ture of EJBs. In CCM, when you can specify client–object couplings in
your application configuration file, the system automatically feeds the
component reference of its target to a receptacle at invocation time.

CCMs’ Persistent State
Persistence of extended CCMs’ state is handled by OMG’s Persistent

State Service. It’s a lot more standardized than EJB’s persistence, in
which you configure container-managed persistence (either automati-

FIGURE 1 Extended CORBA component

Facets

Component Facet Receptacles

Event Sink

Event SourceAttributes

Java COM

14 SEPTEMBER 2000

cally or manually) via vendor-specific tools at deployment time, or hard-
code database calls into the bean itself for bean-managed persistence.
(For basic CCMs the persistence environment is the same as for EJBs.)
The PSS lets you define your persistent state in either of two modes:
transparent persistence, in which you declare persistent variables in your
programming language code, or by using Persistent State Definition Lan-
guage (PSDL), a superset of OMG IDL that combines the flexibility of
bean-managed persistence with standards-based portability.

Event Handling
Another difference between EJBs and extended CCMs is event han-

dling. Based on CORBA’s Notification Service, event handling in CCM is
totally distributed as all channels, endpoints, sources and sinks (see Fig-
ure 1) are either CORBA objects or clients. This lets you couple CCMs in
one container with those in another, even across CCM application
boundaries. Architecturally, it unifies messaging among components
within a container with those in different containers, simplifying struc-
ture as applications grow larger. The Notification Service is very capable
and flexible, with an elegant structured payload in addition to QoS con-
trols and event typing and filtering. Since Java doesn’t define a distrib-
uted event service, EJBs lack this capability.

Multithreading
While EJBs allow only one thread to enter a container at a time,

extended CCMs allow components that are written thread-safe to exe-
cute in a multithreaded container. The setting – either single- or multi-
threaded – is made in the configuration files.

Conclusions
Many programmers (and their managers!) find the single-language

Java environment confining despite its many delightful qualities. Others
don’t mind being confined to Java now, but know that this limitation will
have undesirable consequences in the future. (Even Java applications
will wear the “legacy” label someday!) For these people the CCM provides
a way out – they can program in EJBs, and either integrate or switch to
other languages now or anytime in the future.

We expect many others to look at the features of the extended CCM
and adopt it soon after products become available. As we’ve shown here,
the extended features provide the foundation for application architec-
tures that would be much less elegant written any other way.

All of CORBA 3, including the CCM, is now OMG adopted technology.
The CCM is currently undergoing its first maintenance revision; under its
new procedure OMG waits for this first revision stage to complete before
issuing a formal release with the incremented release number. This is
scheduled for late 2000; products implementing the CCM are expected to
hit the marketplace around the same time.

References
For more on EJBs check any of Jason Westra’s articles in back issues of

JDJ, including June and November 1999 (Vol. 4, issues 6, 11), and
Rodrigues and Raj’s article in August 1999 (Vol. 4, issue 8). For more on
CORBA servants and the POA, see my CORBA Corner column in the
December 1999 JDJ (Vol. 4, issue 12).

For access to all of OMG’s specifications, surf to http://www.
omg.org/gettingstarted/specsandprods.htm. For specifications that
are part of CORBA 3, see http://www.omg.org/technology/corba/
corba3releaseinfo.htm.

AUTHOR BIO
Jon Siegel, the Object Management Group’s director of technology transfer, was an early practitioner of
distributed computing and OO software development. Jon writes articles and presents tutorials and
seminars about CORBA.

siegel@omg.org

Java COM

16 SEPTEMBER 2000

alexr@fiorano.com

Those of you who made the conver-
sion from 1.0 to 1.1 may not have
enjoyed this “tightening” of the spec.
Exceptions are thrown at many different
levels in large applications; each excep-
tion has a specific meaning and is han-
dled differently by your application. To
change how your application handles
exceptions can be a daunting task. For
instance, you have to make sense of the
container’s responsibilities versus yours
as a bean provider. Also, you must
understand how to use new exceptions
correctly and which exceptions have
been deprecated from certain usage.

This month I’ll talk about the main
types of exceptions you’ll encounter
when developing EJBs to the 1.1 specifi-
cation. I’ll discuss the differences be-
tween exception and transaction man-
agement in the 1.0 and 1.1 EJB specifica-
tions and describe each type of exception,
categorizing commonly thrown excep-
tions for you. My intention is to shed
some light on exception handling in 1.1-
compliant EJBs to either smooth your
conversion or ease your new EJB develop-
ment effort.

EJB Exceptions in 1.0
The 1.0 specification divides excep-

tions and their effects on the current
transaction based on who initiated the
transaction and how exceptions are
handled in the scope of the transaction.
It can initiate a transaction three ways:
client-managed, bean-managed and
container-managed. Depending on
your choice for transaction manage-
ment, your recourse on a failed action is
extremely different. Let’s examine how
the 1.0 specification handled transac-
tions and exceptions to better under-
stand the differences between exception
handling in a 1.0- and 1.1-compliant
container.

Client-Managed Transactions in 1.0
Client-managed transactions are

transactions initiated on the client that
generally span multiple calls to one or
more EJBs. Because the client manages
the scope of the transaction, it can
assess exceptions thrown to it and deter-
mine whether to retry the business
function or simply roll back the transac-
tion, essentially calling it quits! The abil-
ity to retry calls to your EJBs without the
transaction rolling back is a great fea-
ture, since remote method invocations
are inherently less reliable than local
calls. In a clustered environment we
may be able to retry the same EJB on
another server without disrupting the
execution of the transaction.

Bean-Managed Transactions in 1.0
Exceptions thrown in entity or state-

less session beans that manage their own
transactions automatically signal the
container to roll back the transaction. The
container doesn’t distinguish exception
types; it simply marks the transaction for
immediate rollback. Stateful session
beans that manage their own transac-
tions have more latitude than their coun-
terparts. They may throw any exception,
except an unchecked one, and still main-
tain their transactional state. This can be
problematic and bean providers are
advised to call EJBContext.setRollback-
Only to enforce transactional integrity.

Container-Managed Transactions in 1.0
The flexibility of transaction manage-

ment is near zero with container-man-
aged transactions in 1.0. All exceptions,
including application and system excep-
tions thrown from an EJB (not handled
gracefully within the EJB), caused an
automatic rollback of the transaction.

Containers can’t tell if the transac-
tion’s integrity can be upheld in 1.0
unless you call EJBContext.setRollback-
Only to prevent a commit. However, call-
ing setRollbackOnly seems like an extra
step to take for the bean provider to
cause a rollback, especially when throw-
ing any exception has the same effect.

Due to a lack of foresight that the EJB
specification would adapt, many early
EJB applications allocated too much
time to migrate to EJB 1.1 exception
handling. The migration effort generally
involves determining which application
exceptions are fatal and adding setRoll-
backOnly calls into the EJB’s code.

EJB Exceptions in 1.1
The EJB 1.1 specification groups

exceptions into two categories to enable
bean developers, client developers and
container providers to handle excep-
tions and recoverability of transactions
more effectively. Three types of excep-
tions may be thrown from an EJB: appli-
cation, system and checked subsystem.
The three types are detailed below.

Application Exceptions
Application exceptions don’t sub-

class java.lang.RuntimeException or
java.rmi.RemoteException. They repre-
sent errors in business logic specific to a
use case or business service provided by
your EJBs – for example, AccountOver-
drawnException in a bank application
or ProcessOrderException in an order
management system. ProcessOrderEx-
ception would be thrown from an
OrderMgrEJB because the user didn’t
include sufficient credit card informa-
tion to correctly process an order.

The EJB specification even provides
some basic application exceptions for use
by bean providers. Standard application
exceptions include CreateException, Dupli-

E J B H O M E

Transactions and Exception Handling in EJB 1.1

WRITTEN BY
JASON WESTRA M

any of you have been developing EJB applications since
the 1.0 version of the specification. In the EJB 1.1 specifi-
cation the approach toward EJB exception handling has
changed slightly regarding the exceptions and transaction
management responsibilities between bean providers and
container vendors.

Create more fault-tolerant code in your new EJB applications

cateKeyException, FinderException, Obj-
ectNotFoundException and RemoveExcep-
tion. Table 1 describes these exceptions and
some user-defined ones.

Enhancing Standard EJB Exceptions:
Standard exceptions can be extended,

if necessary, to show the client that a spe-
cific error occurred. However, I

haven’t had luck with subclassing
mainly because Java doesn’t
support multiple inheritance.
For instance, you subclass
javax.ejb.CreateException to
indicate more specifically that
the parameters passed into
ejbCreate are incorrect. The
new exception name is

InvalidDataException. Later,
when you perform data vali-

dation in an update method,
the InvalidDataException isn’t

reusable because it applies (or
should apply) only to create methods,
since it inherits from CreateException.
Therefore a generic exception that indi-
cates data is invalid warrants an ancestor
separate from the predefined javax.ejb
exceptions. This allows it to be reused in
update and insert scenarios.

Subclassing standard EJB exceptions
can be effective for other reasons, such
as providing a better description of root
errors. A subclass exception that allows
nesting of exceptions is common. The
application exceptions provided for you
don’t have nesting capabilities to allow
handlers to query more information
about the error. Currently they have
empty constructors or their construc-
tors take only a String message about
the error. If your application wants this
more informative exception tracking,
you’ll need to enhance it through inher-
itance.

System Exceptions
System exceptions include Runtime-

Exception, RemoteException and all
exceptions that inherit from them. The
EJB specification provides not only stan-
dard application exceptions, but version
1.1 also introduced a standard system
exception, EJBException, that subclass-
es RuntimeException.

The EJB 1.1 specification describes
the container’s responsibility in the
exception-handling process in more
detail than in 1.0. It slightly modifies the
way containers handle system excep-

tions versus application exceptions. Sys-
tem exceptions cause the container to
automatically roll back its transaction if
executing within one, while any applica-
tion exception is allowed to pass to the
client for handling.

Table 2 details how an EJB container
handles system exceptions. First, a con-
tainer always marks an existing transac-
tion for rollback whether or not the
transaction was initiated by the contain-
er or a client.

Next, the exception is logged to allow
system administrators to monitor errors
in the application that might be system
related. Logging of system exceptions is
mandated in the EJB 1.1 specification;
however, the implementation is left up
to the vendor. Some vendors have sim-
ple logging facilities, while others allow
you to notify third-party monitoring
tools and send pages to system adminis-
trators.

The container must remove the bean
instance, discarding it to prevent its use
in another transaction. At this point the
instance may have corrupt information
and might not be cleared correctly
before being reused. Discarding the
whole bean instance eliminates any
doubt about interacting with unsafe
information. The process of discarding a
bean instance includes removing it from
any instance pooling cycles, dereferenc-
ing the object and allowing it to be
garbage collected.

When a bean instance is discarded,
the client isn’t affected as long as the EJB
is either stateless or an entity bean. Either
of these can be re-created without loss of
state since entity bean state is re-created
from persistent storage and stateless
beans well…don’t have state! However,
when a stateful bean rethrows a system
exception, the container discards it and
the client loses its reference back to the
EJB and any session data it held.

Last, the container handling the sys-
tem exception will throw a RemoteEx-
ception if the transaction was initiated
from the container, or TransactionRoll-
backException if a client is managing
the transaction. TransactionRollbackEx-
ception, a subclass of RemoteException,
indicates that the client’s transaction
has failed and a new one should be
started.

Table 3 details common system excep-
tions encountered in EJB applications.

Checked Subsystem Exceptions
Checked subsystem exceptions are

exceptions thrown from various compo-
nents for a J2EE server including JNDI,
JDBC and JMS. Don’t rethrow system
exceptions or checked subsystem excep-
tions if caught by your application.

E J B H O M E

Java COM

18 SEPTEMBER 2000

TABLE 1 Application exception examples

Exception Defined Entity or Purpose
Session

CreateExcepton javax.ejb package, Both Thrown from ejbCreate to indicate
EJB 1.0 an error in creation of the EJB.

DuplicateKeyException javax.ejb package, Entity Thrown in ejbCreate to indicate a
EJB 1.0 duplicate entity already exists for the

primarykey.

RemoveException javax.ejb package, Both Thrown from ejbRemove to indicate
EJB 1.0 an error in removal of EJB.

FinderException javax.ejb package, Entity Thrown from EJBHome finder
EJB 1.0 methods to indicate an error occurred

processing the finder. Not thrown if
finder completes and finds no rows!

ObjectNotFoundException javax.ejb package, Both For session beans, indicates the
EJB 1.0 session has been terminated and the

object reference is no longer valid.
For entity beans, indicates the entity
has been deleted from persistent storage.

AccountOverdrawnException User-defined Both An example of a user-defined
application exception that indicates an
account balance is overdrawn. It
could be thrown from a session bean
or the account entity bean itself.

ProcessOrderException User-defined Session An example of a user-defined
application exception that’s thrown
when an order isn’t fulfilled because
of missing or invalid information.

Typically, look for checked exceptions
from J2EE subsystems such as JNDI,
JDBC, JMS and RMI, and nest them in an
EJBException, throwing the EJBException
to indicate to the container that it should
mark the current transaction for rollback.
Table 4 details two common checked sub-
system exceptions, NamingException
and SQLException.

Listing 1 shows an example of wrap-
ping a checked subsystem exception. In
this example, if a JDBC call fails to
stmnt.execute("select * from orders")

correctly, the SQLException should be
rethrown as an EJBException instead of
declaring SQLException in the throws
clause. Adding numerous checked
exceptions to the throws statements of a
method signature opens up the client to
the numerous subsystems of the J2EE
platform and should be avoided to pre-
vent complexity. Note: There’s neither
logging nor a print of its call stack – this
duty is left up to the container, which
must report all system exceptions as
indicated by the 1.1 specification.

Although EJBException has multiple
constructors, I generally use the one
that nests the original exception to allow
the caller to get the root cause out of it
when it’s caught on the client side.
Because EJBException is a subclass of
RuntimeException, you don’t need to
code a throws clause. However, this does
put a burden on the client developer,
who must look explicitly for EJBExcep-
tion and open it up, calling getCaused-
ByException to get to the root cause of
the error. Client exception handlers
should be aware that if EJBException’s
nested constructor isn’t used, the
caused-by-exception will be null. You
should code a check for “null” and han-
dle this appropriately to prevent throw-
ing a NullPointerException at runtime.

Summary
The EJB 1.1 specification clarifies

exception handling and transaction
management for both bean providers
and container vendors. Specifically, the
spec made the distinction between sys-
tem and application exception handling
for each role. This distinction allows
bean providers and client developers to
create more fault-tolerant code that
retries transactions when application
exceptions occur. Also, the requirement
that all system exceptions trigger con-
tainers to automatically roll back trans-
actions helps define the scope of
accountability for transaction manage-
ment in containers versus client and
beans. I hope this month’s EJB Home
was informative and can be applied to
your current or next EJB project.

E J B H O M E

jwestra@vergecorp.com

Java COM

20 SEPTEMBER 2000

TABLE 2 Container’s responsibilities for system exceptions

Transaction Type Container Responsibilities

Container-managed Roll back current transaction
(Required, RequiresNew only) Log error to system error log

Remove invalid bean instance from container
Rethrow java.rmi.RemoteException to caller

Client-managed Mark client’s transaction for rollback only
Log error to system error log
Remove invalid bean instance from container
Throw javax.transaction.TransactionRollbackException to caller

TABLE 3 System exception examples

Exception Defined Entity or Purpose
Session

RemoteException java.rmi package Neither, container Thrown by container to indicate a
thrown only communications error between

distributed objects or to a remote
service.

RuntimeException java.lang package Both or Container Thrown if a runtime error is
encountered such as a null pointer

or an array index is out-of-bounds.

EJBException javax.ejb package, Both Thrown from within an EJB’s code
to indicate an irrecoverable action

EJB 1.1 and have the container roll back
transaction.

NoSuchEntityException javax.ejb package, Entity A subclass of EJBException, it
EJB 1.1 indicates that the underlying entity

bean was removed from persistent
storage.

TransactionRollbackException javax.transaction Neither, Thrown to indicate that the
package, JTA container thrown transaction is set for rollback.

TABLE 4 Checked subsystem exception examples

Exception Defined Subsystem Purpose

NamingException(s) javax.naming package JNDI Indicates that an error in a Context or
DirContext of the naming service.
Subclasses help pinpoint exactly what
happened.

SQLException java.sql package JDBC Thrown if an exception occurs
processing SQL through JDBC.

AUTHOR BIO
Jason Westra is the CTO

of Verge Technologies
Group, Inc.

(www.vergecorp.com).
Verge is a Boulder,

Colorado-based firm
specializing in e-business
solutions with Enterprise

JavaBeans.

try {
// call helper method to get

a connection
java.sql.Connection conn =

this.getConnection();
java.sql.Statement stmnt =

conn.createStatement();
stmnt.execute("select * from

orders");

// handle ResultSet
…
…

// close resources
stmnt.close();
conn.close();

}
}
catch(SQLException ex) {

// wrap subsystem exception
and throw EJBException

throw new EJBException(ex);
}

Listing 1: Handling Subsystem Exceptions

As you know, I have the honor of sit-
ting on the editorial board of JDJ with
the title of “Industry News Editor.” So
what does this mean? Well, in a nutshell,
I get to hear about all the juicy things
going on in the industry a wee bit before
the masses are informed. My inbox reg-
ularly fills up with press releases,
announcements and must-reads from
companies all over the globe. Most of it I
merely filtered and passed on down the
chain to other JDJ departments.

Many of the news items aren’t that
specific to Java but to the industry as a
whole, and although this is a Java maga-
zine, I felt that some of this information
might be of interest to you. So with that
in mind, I made the tough decision to
step back from JDJ for a month or two,
refocus my writing efforts and present
the first in a new column devoted to fil-
tering through the news stories and pre-
senting you with an overview of what’s
been happening in the world.

Our more educated readers will have
twigged that JDJ is a monthly publica-
tion and having a monthly news report
just isn’t going to be that cutting edge. To
that end, we’ve built a complete Web site
to accompany this column. On it you’ll
find the latest press releases complete
with a weekly summary of the goings-
on. The site will serve as a conduit of all
things Java related, collating views on all
aspects of our industry. But we need
your help.

www.n-ary.com/industrywatch/
The Web site needs your input. It’s

not a static bunch of HTML pages but a
dynamic, content-rich experience, and
we want your reviews and your articles.
We aim to raise the standard on commu-
nity-driven Web sites. So work with us to
build something rather exciting.

Keith and I have been working hard,
practicing and perfecting our radio
show. We’ve finally prepared the neces-
sary infrastructure to broadcast to you
on a daily basis (we also want to hear
from budding radio DJs interested in
hosting their own shows). So Industry
Watch is coming at you not only in elec-
tronic and print form, but in audio for-
mat.

Industry Watch will be a monthly
review/summary of what’s been going
on in the world at large. I suspect the
overall formula will need a little tweak-
ing and changing as we gather more
feedback, so work with us in the early
days and we’ll soon have a well-oiled
machine.

dot-com Fever Breaks
It’s fair to say that everyone reading

this magazine has an interest in Java in
some shape or form. Furthermore, it’s
probably not going out on a limb to say
that the majority of you are involved in
the Internet either in B2B or B2C activi-
ties. Now, in the middle of the third
quarter, many companies have released
their second quarter earnings, and for
the dot-coms of the world it makes pret-
ty sorry reading.

Here in Europe we’ve seen the
demise of two high-profile e-tailers:
boo.com and clickmango.com. Both ran
out of money and couldn’t raise the nec-
essary funds to keep them going until
they hit more profitable times. Of the
two, I found the story behind boo.com
to be the most interesting. Apparently,
one of the reasons for its failure to pick
up the necessary user base was that the
technology employed at its Web site was
too cutting edge: only those with a high
bandwidth connection were able to uti-
lize the site properly.

It’s interesting to see that while we all
strive to use the latest and greatest tools,
sometimes it doesn’t pay to be on the
bleeding edge. Solutions have to be
delivered that will allow the widest user
base to utilize them. The notion of faster
bandwidth has been promised for many
years now, but the majority of users are
still surfing the Net with their dial-up
analog modems. They’re trying not to
get too impatient waiting for that huge
JPEG image to download, which will do
nothing to enhance the experience
except to make them wary of clicking on
the next link to drive them deeper into
the site.

I’ve read many reports and press
releases claiming B2C is dead and long
live B2B. I can safely say that the major-
ity of them that have come from the
application server vendors have played
on their B2B features as opposed to their
wider appeal. So what’s happening to
the poor old consumers? Are they going
to be left behind?

I hope not, although it would appear
that making profits in this area is
increasingly difficult. Intel and SAP
recently announced they were giving up
the ghost and shutting down their oper-
ations as they couldn’t see a path to
profit. Amazon, no stranger to losses,
announced they had lost $115.7M in the
last quarter – which wasn’t as bad as the
first quarter, which recorded a loss of
$121M. Even Barnes and Noble, a tradi-
tional “bricks and mortar” company,
posted losses of $45.4M for the last
quarter for its online operation.

So just who is making money in the
B2C world? Well, it appear that compa-
nies that aren’t warehousing any stock
aren’t doing too badly. eBay posted
profits of $11.6M, but Expedia recorded
a $42.2M loss. It just doesn’t make
sense.

What’s It All About?
Maybe not all about Java, but of interest anyway…

WRITTEN BY
ALAN WILLIAMSON

I
know what you’re thinking: What happened to Straight Talking? It’s a good
question, and most certainly deserves an answer. As seasoned JDJ readers know,
Straight Talking was a regular column for over two years. But as much as I
loved “talking” to you every month, the time has come to move on and intro-
duce a whole new column/format.

Java COM

24 SEPTEMBER 2000

I recently spoke to a VC company
about all of this. They said that a year
ago many of the original investors were
quite happy to wait the two to four years
for market share and realization of prof-
its. But with all the bad press, some are
beginning to get a little itchy and impa-
tient, and fail to come up with the once
promised second and third rounds of
funding.

That said, the B2B world is doing just
fine and dandy. Sun posted record earn-
ings: $5 billion in revenue for just one
quarter, totaling more than $15 billion at
year’s end. So if anyone ever asks if Sun
is making money out of Java, I think you
can take the answer as Yes. The applica-
tion server market is very buoyant, with
Sun’s iPlant securing over $1 billion in
revenues alone. Not bad for a company
that’s primarily a box shifter.

Looking at all the trade journals and
financial papers, it appears that those
making money out of the Internet are
those that are tooling up the rest of the
industry. The dot-coms that have invest-
ed heavily in these tools appear to be
taking the beating, fighting vigorously in
the B2C marketplace, trying to stay
ahead before the grim reaper (the CFO)
comes a’knocking.

For us Java developers it would seem
on the face of it that that book on EJBs

might not seem such an extravagant
purchase after all. As an entrepreneur, I
don’t know what it signals. Reading
through the posts of the UK’s premier
forum for start-ups, First Tuesday
(www.firsttuesday.com), it seems that
investors have gone cold on the B2C
ideas, and are looking to take the safer
route of B2B instead.

I wonder how the industry will look
in 12 months’ time. What technologies
should we all be looking to invest our
skill and energy in, to stay ahead of the
competition? Investing in Java alone is
no longer sufficient – we have to narrow
our focus even further.

Speaking of Java, I noted that Kim
Polese, the “mother of Java,” has stepped
down from the CEO post at Marimba to
take on a less prominent role as chair
and CSO. Now there’s a company we
don’t hear much from. Marimba didn’t
fare well when push technology sudden-
ly went out of vogue. But with a reposi-
tioning, they adapted their technology
to manage corporate software on open
networks. An astute move now that they
recently posted their first-ever earnings,
with a $1.3M profit. I tip my hat to Ms.
Polese for not allowing her ego to get in
the way of her company’s growth. A rare
thing for a founder to voluntarily step
down and allow someone else to run her

baby. I can’t image Larry Ellison or Scott
McNealy doing the same.

As this column was being prepared,
Microsoft featured heavily in many
areas of news. If they aren’t being inves-
tigated by yet another government for
alleged market dominance, they seem to
be still moving forward, announcing
new alliances and products. The recent
U.S. court case doesn’t seem to have
slowed down their business in the
slightest. One even gets the feeling
they’re cashing in on all the free publici-
ty.

Next month I’ll review what’s been
happening on the C# front, Microsoft’s
recently announced new language that
officially has nothing to do with Java.
Yeah, sure!

Remember to check out www.n-
ary.com/industrywatch/ for regular
updates on the moves of our great
industry.

AUTHOR BIO
Alan Williamson is CEO of the first pure Java company in
the UK, n-ary (consulting) Ltd (www.n-ary.com), a Java
solutions company specializing in delivering real-world
applications with real-world Java. Alan has authored two
Java Servlet books and contributed to the Servlet API.

alan@n-ary.com

Java COM

26 SEPTEMBER 2000

Java COM

28 SEPTEMBER 2000

J
avaSpaces is a powerful Jini ser-

vice specification from Sun

Microsystems that provides a

simple yet powerful infrastruc-

ture for building distributed applications.

The JavaSpaces specification defines a

reliable distributed repository for objects,

along with support for distributed transac-

tions, events and leasing. In the JavaSpaces

programming model, applications are

viewed as a group of processes, cooperating

via the flow of objects into and out of

“spaces.”

A new and

futuristic

paradigm

far from traditional

invocation of

methods on remote objects

INTRODUCING
J AVA S PA C E S

J D J F E A T U R E

WRITTEN BY SANJAY MAHAPATRA

Inspired by “Tuple-Spaces”
JavaSpaces is based on the concept of “tuple-spaces” first described

in 1982 in the Linda programming language and system originally pro-
pounded by Dr. David Gelernter at Yale University. The public-domain
Linda system is a coordination language for expressing parallel process-
ing algorithms without reference to any specific computer or network
architecture and provides interprocess coordination via virtual shared
memories or tuple-spaces that can be accessed associatively.

The tuple-space model is especially useful for concurrent algorithms.
Although JavaSpaces technology is strongly influenced by the Linda sys-
tem, it differs from Linda in several ways – such as Java’s richer typing,
object orientation, subtype matching and transactional support span-
ning multiple spaces, leasing and events.

JavaSpaces in Today’s Networked World
Although the programming model and concepts underlying Java-

Spaces may at first seem abstract and theoretical, JavaSpaces does in fact
provide an elegant and practical approach to solving common real-
world scenarios in today’s increasingly networked world. Distributed,
collaborative and parallel applications can be solved using a JavaSpaces-
based solution since JavaSpaces lends itself to applications such as trad-
ing services, reservation systems, online ordering systems, online auc-
tion systems, large computation-intensive jobs, workflow systems,
mobile offices and agent technology.

A Distributed Algorithm as a Flow of Objects Between Spaces
Any application developed using JavaSpaces technology would need

to be modeled as a flow of objects through one or more spaces. Java-
Spaces represents a fundamentally different approach from that of the
more traditional invocation of methods on remote objects or direct
exchange of information between processes. With the method-invoca-
tion approach, specific remote interfaces are needed for each operation.
With the JavaSpaces’ flow-of-objects approach, on the other hand, only
one interface is required: namely, the JavaSpaces interface (from the
package net.jini.space).

What’s a Space?
The term space refers to an implementation of the JavaSpaces service

specification. Like the rest of the Java technology, there’s a separation
between the specification and its implementation of the specification. A
number of vendors may provide implementations. A JavaSpaces client is
expected to receive identical service and functionality from all such
space implementations, though their internal designs may vary. A space,
then, is a particular implementation of the specification and represents
a persistent object exchange “area” via which remote processes can
coordinate their actions and exchange data. The space thus provides a
ubiquitous, cross-platform framework for distributed computing.

Advantages of JavaSpaces
The JavaSpaces model has numerous advantages:

1. Multiple processes can access data concurrently.
2. There is a loose coupling between senders and receivers, which

enhances software reuse and flexibility of design.
3. The model has extremely high scalability.
4. At the same time it is simple, flexible and reliable.
5. The space provides support for distributed events and leasing.
6. Atomicity, transactional security, synchronization and coordinated

concurrent access are inherently built into JavaSpaces.

Characteristics of the “Space”
A space is a shared, persistent, associative, transactionally secure and

network-accessible repository for objects that allows processes to read,
remove and insert objects into itself and thus communicate by such an
exchange of objects through one or more spaces. Let’s review the chief
characteristics:
• Shared: A space is a network-accessible, shared region of memory

with which multiple remote processes can concurrently interact. The
space manages the details of concurrent access, leaving you to focus
on your application’s protocols.

• Persistent: A space provides a reliable storage mechanism. An object
that is stored in a space will reliably remain in the space until it’s
removed from the space or until its lease time – as specified at the time
of writing into the space – is up.

• Associative: A space supports an associative lookup mechanism. An
“associative lookup” provides a means of finding objects of interest
according to their content and type, rather than by name or memory
location.

• Transactionally secure: A space supports a transaction model, which
ensures that all operations on a space are atomic and transactionally
secure. A single space transaction may include multiple operations on
one or more spaces.

“Space” Rules
While within the space, objects can’t be modified or methods invoked

on them. Processes must exclusively remove objects from the space,
update or invoke methods on the objects only while outside the space,
and then reinsert objects back into the space, as required from the appli-
cation standpoint. The insertion and removal of an entry into and from
a space are guaranteed to be atomic.

JavaSpaces Interfaces
Each implementation of a JavaSpaces service will export objects to

the local client that implement the JavaSpaces interface (from package
net.jini.space), via which the local client can interact with the remote
JavaSpaces service. The JavaSpaces interface isn’t a remote interface.

What Can Be Placed into the Space
A space stores “entries.” An entry is a class in the Java platform that

implements the Entry interface (package net.jini.core.entry) as defined
in the Jini Entry Specification. Once you’ve created an entry, you’re ready
to perform operations that interact with the “space.” Any class whose
instances are intended to be written into a space or used as the basis of
an associative lookup must implement the Entry interface.

Associative Lookup Using Templates
The associative lookup functionality provided by the space is based

on the template’s fields. A template is an entry object of the same class
or a superclass of the entry of interest, with its fields set to values that
will be matched against entries within the space in a read or take oper-

Java COM

30 SEPTEMBER 2000

A SHORT NOTE ON JINI

Jini (not an acronym for anything and pronounced like the word “genie”) is

technology from Sun Microsystems that represents a network-

centric and object-oriented paradigm for distributed com-

puting. Jini enables a wide variety of devices from diverse

manufacturers to interact via interfaces to objects rather

than via common network protocols, and raises the level of abstraction from the

communication protocol level to an object-oriented, software-interface level.

Java COM

32 SEPTEMBER 2000

ation. Null fields in the template act as wild cards. In case there are mul-
tiple entries that match a template, only one will be returned. The space
makes an arbitrary choice – there’s no ordering of entries within the
space.

Operations
The four primary operations that can be applied to a space are write,

read, take and notify.

Write
The write() operation places a copy of an entry object into the space

such that the entry can subsequently be accessed via a read or take oper-
ation.

Read
The read() operation returns an entry that

matches the template, without removing the
entry from the space. Multiple processes can
read the same entry at the same time. If a match-
ing entry isn’t available immediately, the read()
operation will wait for an entry to be introduced
into the space, or until its timeout period is up.
The constant JavaSpaces.NO_WAIT may be used
as the timeout value, in which case the read
request will return immediately, even if no
matching entry is found. The readIfExists()
works like the read() except that it returns imme-
diately without waiting for the timeout period
unless a matching entry happens to exist within
a currently occurring transaction – in which case
readIfExists() will wait up to its timeout value for
that transaction to complete. Thus readIfExists()
returns immediately except in cases when a
matching value exists within a transaction.

Take
The take() operation returns an entry that

matches the template and simultaneously
removes the entry from the space. The take()
operation is atomic, thus ensuring synchro-
nization and concurrency. The takeIfExists()
operation works in a manner similar to the
readIfExists() operation.

Notify
The notify() method is used to register interest in the arrival of an

entry into the space that matches a specified template. The space noti-
fies you that an entry that matches your template has arrived into the
space. This notification and distributed event mechanism relies on the
Jini distributed event model as described in the Jini Distributed Event
Specification.

The concepts of entry, template and operations are central to Java-
Spaces. Though fairly straightforward, they’re immensely powerful.

Leasing and the Lease Interface
The Lease interface from the package net.jini.lease includes signa-

tures for methods including getExpiration() and renew(). A request to
write an entry into a space is accompanied by the requested lease time,
the time for which the caller requests the entry to be stored within the
space. The write operation actually returns a Lease object representing
the lease time granted by the space, which may be less than the request-
ed lease time. When the granted lease time is up, the entry is removed
from the space. Thus any entry written into a space may be removed
either explicitly with the take() operation or when its granted lease time
is up. Once a lease has been granted for a finite period of time, it may

subsequently be renewed. The lease time associated with a write opera-
tion may be requested and granted for the constant Lease.FOREVER,
which means that the entry will remain in the space persistently until
such time that it is explicitly removed from the space via a take opera-
tion. Leasing, as applicable to JavaSpaces, is defined in the Jini Distrib-
uted Leasing Specification. Leases and lease times may also be applied
to transactions. Just as an entry is removed from a space when its lease
time is up, a transaction will be aborted if it has not completed when its
lease time is up, in which case none of the transaction’s constituent
operations will be committed.

Distributed Events
JavaSpaces technology provides a distributed event model that uses

the Jini event model as described in the Jini Distributed Event Specifica-
tion. Just as the event model in the single JVM
environment comprises the event source, event
object and event listener, the Jini distributed
model comprises the event source, the remote
event object and the remote event listener. The
space acts as the event source that fires events
when entries are written into it and notifies
processes that have registered interest in entries
that match specified templates.

Transactions
Transactional support is an essential aspect of

any distributed service framework, and Java-
Spaces technology provides a distributed trans-
action service based on the Jini transaction
model as described in the Jini Distributed Trans-
action Specification. The JavaSpaces transaction
model simplifies the use of the more general Jini
transaction model, and provides a means of
grouping multiple space operations on one or
more spaces. A process that requires transac-
tional functionality will need to look up the
transaction manager (a remote service), obtain
the transaction from the manager, then pass the
transaction to each space-based application
that’s intended to be part of the transaction. The
transaction manager oversees all transactions. A
transaction is actually a leased resource; if a

transaction is neither explicitly committed nor explicitly aborted, the
transaction manager will abort it upon expiration of its lease. Transac-
tions affect space operations in several ways: for instance, an entry that
is returned by a read() operation that’s part of a transaction can’t be
taken by a take() operation that’s part of another transaction until the
first transaction is completed.

Understanding JavaSpaces Techology in Relation to
Other Technologies
JavaSpaces and Three-tier Architecture

A JavaSpaces application typically represents the middle tier of a
three-tier model, since clients and servers throughout the network can
exchange objects via the space. The main advantage is high scalability
and concurrency. JavaSpaces technology supports the thin-client
model.

JavaSpaces and J2EE
The J2EE technology groups several technologies – EJB, Java Servlets,

JavaServer Pages, JavaMail, Java Message Service, JDBC, CORBA technol-
ogy and so on. The emphasis is on interaction with existing enterprise
resources and standardization so that the consumer’s past and current
investment in IT efforts is protected by the use of standard interfaces,

‘‘

’’

JavaSpaces
technology
provides a
distributed
transaction

service based
on the Jini

transaction
model

Java COM

34 SEPTEMBER 2000

ease of legacy integration and application server vendor/implementa-
tion independence. JavaSpaces and Jini represent a new and futuristic
paradigm that endeavors to meet the complex needs of tomorrow’s
increasingly networked world by emphasizing dynamic communication,
spontaneous “lookup ’n’ discovery” and network enablement.

JavaSpaces and Messaging Systems
JavaSpaces goes far beyond a mere messaging system. It’s a powerful

and flexible service that provides a distributed object repository with
persistence storage along with support for events, leasing and transac-
tions. JavaSpaces isn’t limited to any particular architecture such as
point-to-point or publish/subscribe. For instance, publishers and sub-
scribers in the publish/subscribe messaging architecture use subject-
based messaging, while JavaSpaces provides a more flexible associative
lookup by value and type.

JavaSpaces and JMS
Java Message Service provides a high-level generic interface to mes-

saging products that support the JMS API. While both JavaSpaces and
JMS represent a model with uncoupled senders and receivers, Java-
Spaces provides support for leasing and represents a more generic model
that is not limited to the point-to-point and publish/subscribe models
supported by JMS.

JavaSpaces and Databases
Although JavaSpaces provides a distributed object persistence ser-

vice, it’s neither a relational nor an object database. A space is an
unordered collection of objects that may contain data as well as the
behavior. JavaSpaces focuses on supporting ease of writing distributed
applications rather than merely providing a data repository functionali-
ty. There’s also a difference in the querying mechanism supported by
JavaSpaces in that querying is only for exact-match-or-don’t-care for a
particular field. A space can find, match and reference objects by both
type and value, which means any object-based program or device can
join a JavaSpaces system.

Summary
The JavaSpaces-related API is small-sized and simple, yet the con-

cepts of space operations, distributed events, leases and transactions
when applied together form a powerful infrastructure for building
robust, large-scale, distributed applications.

References
1. JavaSpaces Specification 1.0, Sun Microsystems 1999.
2. Freeman, E., Hupfer, S., and Arnold, K. (1999). JavaSpaces: Principles,

Patterns and Practice. Addison-Wesley.
3. Waldo, J. “The End of Protocols.” Java developer connection:

http://developer.java.sun.com/developer/technicalArticles/jini/pro-
tocols.html

4. Freeman, E., and Hupfer, S. Make Room for JavaSpaces, Parts 1, 2 and
3. http://www.javaworld.com/javaworld/jw-11-1999/jw-11-jiniology-
2.html

5. Jini Entry Specification 1.0.1, Sun Microsystems 1999.
6. Jini Entry Utilities Specification 1.0.1, Sun Microsystems 1999.
7. Jini Distributed Leasing Specification 1.0.1, Sun Microsystems 1999.
8. Jini Distributed Event Specification 1.0.1, Sun Microsystems 1999.
9. Jini Distributed Transaction Specification 1.0.1, Sun Microsystems

1999.

AUTHOR BIO
Sanjay Mahapatra is a Sun certified Java 1.1 programmer and architect (Java Platform 2) and works for
Cook Systems International, Inc., a consulting and solutions company.

sanzem@hushmail.com

alexr@fiorano.com

This article discusses a technique
used to read and write encoded data
using Java I/O streams. We’ll define
encoding and cover some of its history,
examine two I/O stream classes and an
interface, then finish by applying this
technique to both a text and a binary file
using the Base64 encoding scheme. With
this technique you can provide encoding
in your applications as well as encoded
user information for authenticating
against HTTP servers. This technique is
provided using a standard, familiar
group of Java classes: the I/O streams.

What Is Encoding?
Encoding manipulates and reorga-

nizes bytes so they can be understood by
other applications (see Figure 1). This is
done primarily for Internet e-mail sys-
tems, but is also used in places like basic
authentication. Basic authentication
requires the user ID and password to be
encoded using Base64. Although encod-
ing has been around awhile, you proba-
bly never knew it. For example, your e-
mail and attachments could be encoded
before being sent and decoded when
received. E-mails specify encoded con-
tent by using the Content-Transfer-
Encoding header. This header field can
have the following values:
• 7Bit
• Quoted-Printable
• Base64
• 8Bit
• Binary

One side effect of encoding is a pos-
sible increase in the size of your data. It
all depends on the encoding scheme
you’re using.

Now that we have some basics, let’s
look at the EncodedInputStream and
EncodedOutputStream classes, which
are used to read and write encoded data.

EncodedInputStream
The EncodedInputStream takes en-

coded data and give it back as a byte
array. Convert this data to any form you
wish, such as text (see Listing 1). Its con-
structor takes two arguments: Input-
Stream and EncodingScheme. The
InputStream course could be a FileIn-
putStream or even a socket.

Base64EncodingScheme scheme = new

Base64EncodingScheme();

EncodedInputStream eIn = new Encoded-

InputStream(new

FileInputStream("encoded.txt"),scheme

);

Byte data[] = eIn.readEncoded();

This class overrides the read method
and adds a method called readEncoded,
which reads encoded data and returns it
as a byte array. The read method has
been overridden to always return a -1.
Initially this was done because the read
method returns single bytes; when
decoding data, you may be working with
more than a single byte at a time.

EncodedOutputStream
The EncodedOutputStream writes

out data using whatever encoding
scheme you specify (see Listing 2). Its
constructor takes two arguments:
InputStream and EncodingScheme. The
OutputStream can be almost any kind of

stream, such as a FileOutputStream or a
socket.

Base64EncodingScheme scheme = new

Base64EncodingScheme();

EncodedOutputStream eOut = new

EncodedOutputStream(new FileOutput-

Stream("encoded.txt"),scheme);

eOut.write("This is unencoded

data".getBytes());

This class will buffer output as it’s
written to the class, encode the data,
then write it out to the actual Output-
Stream specified in the constructor. Use
it as you would any other I/O stream –
just write either an integer or a byte
array and the data will be encoded using
the scheme you passed into the con-
structor.

EncodingScheme
Let’s look at the EncodingScheme

interface. It’s a class that provides differ-
ent encoding implementations such as
the Base64 used in this article (see List-
ing 3). Its two methods are encode and
decode. The EncodedInputStream and
EncodedOutputStream delegate to this
class when writing and reading the data.
Rather than impose different encoding
scheme implementations on a user of
the stream, developers can plug in dif-
ferent encoding schemes (Quoted-
Printable, 7Bit and Base64) and use
familiar methods to read and write data
without requiring significant changes to
their code.

Base64 Encoding Scheme
Before moving to our sample appli-

cation, we need to implement an encod-
ing scheme; I’ll show the Base64 encod-
ing scheme. This scheme basically reor-
ganizes three 8-bit chunks into four 6-
bit chunks (see Figure 2). These four 6-

J A V A T E C H N I Q U E S

Encoded Streams

WRITTEN BY
MIKE JASNOWSKI T

wo basic types of data – test and binary – are used in appli-
cations to create files such as documents, images, video,
text and executables. Certain applications, however, may
need to alter a file to make it available to other applica-
tions; for example, e-mail requires text and binary data to
be encoded before it’s sent.

Read and write encoded data with Java I/O streams

Java COM

36 SEPTEMBER 2000

FIGURE 1 Basic flow of encoding and
decoding

THIS IS
UNENCODED

DATA

ASDNRIT43
ADFSGPOI
4TIQVREW

E
N

C
O

D
E

R

ASDNRIT43
ADFSGPOI
4TIQVREW

THIS IS
UNENCODED

DATA

D
E

C
O

D
E

R

bit chunks are represented using a spe-
cial NVT ASCII character set. The “=”
sign is used to pad chunks that aren’t a
multiple of 3 bytes. You must also orga-
nize encoded data into chunks no
greater than 76 bytes each. A more for-
mal explanation is available in RFC
2045. As noted previously, encoding
increases the size of your data. Base64
increases the size by approximately one-
third.

The basic flow of the encode method
is to work with 3 byte chunks at all times.
When you reach the end of your data,
pad with the “=” character. After each
iteration of the loop, 4 bytes will be writ-

ten out to the buffer. When the loop has
completely passed through all the data,
padding is added and the encoded byte
array is returned. The decode method
operates almost the same except it
works with 4 byte chunks instead of 3
and ignores the padding character (see
Listing 4).

Sample Application
Let’s put our encoding scheme to

use. Our first example encodes a Java
source file, then decodes it (see Listing
5). Compile EncodingSample and then
run it, specifying HelloWorld.java as the
argument (see Listing 6). Once it’s fin-
ished running, look at the contents of
the encoded.txt file to see what the file
looks like in its encoded state.

Now take the HelloWorld Java class
file, encode it and then decode it. If you
haven’t already done so, compile the
HelloWorld.java file and then run Encod-
ingSample, specifying HelloWorld.class
as the argument. Then look at
encoded.txt file to see what the file
looked like encoded. To prove the file
was successfully decoded, type “java

HelloWorld” – you should see “Hel-
loWorld” printed out.

Enhancements
While EncodedInputStream and En-

codedOutputStream allow you to easily
read and write encoded data, some
enhancements can be made. Buffering
large datasets makes it easy to decode all
at once but may cause intermittent Out-
OfMemoryErrors. Alternatively, data can
be encoded and decoded in chunks rather
than all at once. Due to time constraints I
was unable to implement this feature.

Summary
It’s easy to provide an extensible

means to read and write encoded data
using ordinary Java I/O streams. You can
also provide your own EncodingScheme
implementations and plug them into
your code without changes. For all you
sun.misc.BASE64Encoder users, you
now have a documented way to use
Base64 encoding. Good Luck!

J A V A T E C H N I Q U E S

Java COM

38 SEPTEMBER 2000

AUTHOR BIO
Mike Jasnowski, a
Sun-certified Java

programmer, has over 17
years of programming

experience and over three
years with Java. He works
for a software company in

Kansas City, Missouri. boopan@msn.com

FIGURE 2 Three 8-bit chunks reorga-
nized as four 6-bit chunks

01000001A
S

C
II

01000100 01000001

J D J

S K KR
00010010 00100100 00010001 00001010

N
V

T
A

S
C

II

/*
*
* EncodedInputStream
*
* This class is used to decode a stream of data that has

been encoded
*
*
* @author Mike Jasnowski

* @version 1.0 , 06/01/2000
*/

import java.io.InputStream;
import java.io.IOException;
import java.io.ByteArrayOutputStream;

public class EncodedInputStream extends InputStream{

private EncodingScheme encoding_scheme;
private InputStream in_stream;
private ByteArrayOutputStream in = new ByteArrayOutput-

Stream();

public EncodedInputStream(InputStream in,EncodingScheme
scheme){

in_stream = in;
encoding_scheme = scheme;

}

public int read() throws IOException{
int nill = -1;
return nill;
}

public byte[] readEncoded() throws IOException{

int read = 0;
byte decoded[] = null;

while ((read = in_stream.read())!=-1)
in.write(read);

decoded = encoding_scheme.decode(in.toByteArray());

return decoded;
}

public void close() throws IOException{
super.close();
in_stream.close();
}

}

/*
*
* EncodedOutputStream
*
* This class is used to encode a stream of data
*
* @author Mike Jasnowski

* @version 1.0 , 06/01/2000
*
*/

import java.io.OutputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

public class EncodedOutputStream extends OutputStream{

private OutputStream out_stream;
private ByteArrayOutputStream out = new ByteArrayOutput-

Stream();
private EncodingScheme encoding_scheme;

public EncodedOutputStream(OutputStream out,EncodingScheme
scheme){

out_stream = out;
encoding_scheme = scheme;

}

public void write(int b) throws IOException{
/* Encoding needs to be done here before it's written

to Outputstream */
out.write(b);

Listing 2

Listing 1

Java COM

40 SEPTEMBER 2000

}

public void write(byte[] b) throws IOException{
write(b,0,b.length);

}

public void write(byte[] b,int offset,int length) throws
IOException{

for (int i = 0;i < length;i++)
write(b[offset + i]);

}

public void close() throws IOException{
super.close();
out_stream.write(encoding_scheme.encode(out.toByteAr-

ray()));
out_stream.close();

}
}

/*
*
*
* EncodingScheme - The interface class for all Encod-

ingSchemes
*
* @author Mike Jasnowski

* @version 1.0 , 06/01/2000
*/

public interface EncodingScheme{

/* This method is called by EncodedOutputStream */

public byte[] encode(byte[] to_encode);

/* This method is called by EncodedInputStream */

public byte[] decode(byte[] to_decode);

}

/*
*
* This class carries the encode/decode logic for the scheme
*
* @author Mike Jasnowski

* @version 1.0 , 06/01/2000
*/

import java.io.ByteArrayOutputStream;

public class Base64EncodingScheme implements EncodingScheme{

char NVT_ASCII[] =
{'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P
','Q','R','S','T','U',
'V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k'
,'l','m','n','o','p','q','r','s','t','u',
'v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','+'
,'/'};

private boolean isPadding = false;

public Base64EncodingScheme(){}

public byte[] encode(byte[] data){

char temp[] = new char[4];
int byte1=0,byte2=0,byte3=0,byte4=0;

int num_padding = 3;
byte[] hold_buffer = null;
String encoded = "";
int chunk = 0;
ByteArrayOutputStream out = new ByteArrayOutputStream();
int counter = 0;

for (int i = 0;i < data.length;i+=3){
hold_buffer = new byte[3];
temp = new char[4];

num_padding=3;
if (i < data.length){ hold_buffer[0] = data[i];num_padding-

-;}
if (i+1 < data.length){ hold_buffer[1] =

data[i+1];num_padding--;}
if (i+2 < data.length){ hold_buffer[2] =

data[i+2];num_padding--;}

/* This puts padding in place */
if ((i+2 > data.length) && (hold_buffer[1] == 0))

{hold_buffer[1] = 61;isPadding=true;}
if ((i+3 > data.length) && (hold_buffer[2] == 0))

{hold_buffer[2] = 61;isPadding=true;}

/* Encoding Starts Here */
byte1 = unsigned(hold_buffer[0]) >>> 2;
byte1 = byte1 & 0xFF;

temp[0] = NVT_ASCII[byte1]; /* first byte encoded */

byte1 = unsigned(hold_buffer[0]) << 6;
byte1 = byte1 & 0xFF;
byte1 = byte1 >>> 2;

if (hold_buffer[1] != 0x3D | !isPadding)
byte2 = unsigned(hold_buffer[1]) >>> 4;

else
byte2 = 0;

byte3 = byte1 | byte2;

temp[1] = NVT_ASCII[byte3]; /* second byte
encoded */

if (hold_buffer[1] != 0x3D | !isPadding){

byte1 = unsigned(hold_buffer[1]) << 4;
byte1 = byte1 & 0xFF;

byte1 = byte1 >>> 2;
byte2 = unsigned(hold_buffer[2]) >>> 6;
byte3 = byte1 | byte2;

temp[2] = NVT_ASCII[byte3]; /* third byte encod-
ed */

}

if (hold_buffer[2] != 0x3D | !isPadding){
byte1 = unsigned(hold_buffer[2]) << 2;
byte1 = byte1 & 0xFF;

byte1 = byte1 >> 2;
temp[3]= NVT_ASCII[byte1]; /* fourth byte encod-

ed */

}

counter = 0;

for (int j = 0;j<temp.length;j++){

if (temp[j] != 0){
counter++;
out.write((byte)temp[j]);

}
}

chunk+=4;

if (chunk == 76){

out.write(13);
out.write(10);
chunk=0;

}

}

/*Write out padding */
for (int j = 0;j<num_padding;j++)
out.write(61);

/* Write final CRLF */
out.write(13);
out.write(10);

return out.toByteArray();

Listing 4

Listing 3

Java COM

42 SEPTEMBER 2000

}

public byte[] decode(byte[] data){

byte decoded[] = new byte[3];
byte hold_buffer[] = new byte[4];
int byte1=0,byte2=0,byte3=0;
int running_length = 0;
ByteArrayOutputStream out = new ByteArrayOutputStream();
ByteArrayOutputStream temp = new ByteArrayOutputStream();
int remove_padding = 0;

/* Strip out CRLF - Chunk markers */
for (int c = 0;c<data.length;c++){
if (data[c] != 0x0D && data[c] != 0x0A)

temp.write(data[c]);
}

byte newdata[] = temp.toByteArray();

running_length = newdata.length;

for (int i = 0;i < running_length;i+=4){

hold_buffer = new byte[4];
decoded = new byte[3];
remove_padding = 0;

hold_buffer[0] = newdata[i];
hold_buffer[1] = newdata[i+1];
hold_buffer[2] = newdata[i+2];
hold_buffer[3] = newdata[i+3];

if (hold_buffer[2] == 61) remove_padding++;
if (hold_buffer[3] == 61) remove_padding++;

byte1 = nvt_lookup((char)hold_buffer[0]) << 2;

byte2 = nvt_lookup((char)hold_buffer[1]) >> 4;
byte3 = byte1 | byte2;

decoded[0] = (byte)byte3; /* First Byte Decoded */

byte1 = nvt_lookup((char)hold_buffer[1]) << 4;
byte2 = nvt_lookup((char)hold_buffer[2]) >> 2;
byte3 = byte1 | byte2;

decoded[1] = (byte)byte3; /* Second Byte
Decoded */

byte1 = nvt_lookup((char)hold_buffer[2]) << 6;
byte2 = nvt_lookup((char)hold_buffer[3]) ;

byte3 = byte1 | byte2;

decoded[2] = (byte)byte3; /* Third Byte Decoded */

out.write(decoded,0,decoded.length-remove_padding);

}

return out.toByteArray();
}

private int nvt_lookup(char c){
for (int i = 0;i<NVT_ASCII.length;i++){
if (c == NVT_ASCII[i])
return i;

}
return 0;
}

private int unsigned(int value){
int newvalue = value << 24;
return newvalue >>> 24;

}

}

/*
*

* This sample performs the following:
*
* 1) Encodes some sample text using the "EncodedOutput-

Stream"
* 2) Displays the encoded text from a file
* 3) Decodes the sample text by reading in the file using
* the "EncodedInputStream"
*
* @author Mike Jasnowski
* @version 1.0 , 06/01/2000
*/

import java.io.*;

public class EncodingSample{

public static void main(String args[]){
new EncodingSample(args[0]);

}

public EncodingSample(String filename){

Base64EncodingScheme scheme = new Base64EncodingScheme();

try {

/* Write it out and encode */

EncodedOutputStream encOut = new EncodedOutput-
Stream(new FileOutputStream("encoded.txt"),scheme);

ByteArrayOutputStream buffer = new ByteArrayOutputStream();
FileInputStream fin = new FileInputStream(filename);

int ch = 0;
while ((ch = fin.read())!=-1)

buffer.write(ch);

byte edata[] = buffer.toByteArray();

encOut.write(edata);

encOut.close();

System.out.println(filename + " has been encoded");

/* Read it back in and decode */

EncodedInputStream encIn = new EncodedInputStream(new
FileInputStream("encoded.txt"),scheme);

int r = 0;
byte ddata[] = encIn.readEncoded();
encIn.close();

FileOutputStream fout = new FileOutputStream(filename);

fout.write(ddata,0,ddata.length);
fout.close();

System.out.println(filename + " has been decoded");

}catch(IOException e){
System.out.println(e);

}

}
}

public class HelloWorld{

public static void main(String args[]){
new HelloWorld();

}

public HelloWorld(){
System.out.println("HelloWorld");

}

}
Listing 5

Listing 6

Java COM

44 SEPTEMBER 2000

B
uilding large systems requires the difficult and time-

consuming activities of elicitation and representa-

tion of software requirements. During these analysis

activities, particular analysis abstractions emerge.

These abstractions, called analysis patterns, represent reusable patterns

for subsequent analysis efforts in various domains. As an example, soft-

ware developers use an analysis abstraction called Person to represent a

person from different application domains, such as a student person,

employer person or customer person. Martin Fowler, in his book Analysis

Patterns, has defined a higher abstraction to represent either a person or

an organization labeled the Party pattern.

J D J F E A T U R E

WRITTEN BY DR. SARA STOEKLIN AND DR. CLEMENT ALLEN

Java COM

46 SEPTEMBER 2000

The most popular patterns – design patterns – deal with those pat-
terns useful in both object-oriented design and programming. Design
patterns represent reusable software structures needed for implementa-
tion. By contrast, Fowler’s Analysis Patterns represents reusable abstrac-
tions needed in the elicitation and representation of the software
requirements, hence analysis patterns. Analysis patterns represent con-
ceptual domain structures denoting the model of a business system
domain, rather than the design of computer programs. While analysis
patterns don’t deal directly with the details of implementation, they do
influence how code is designed.

Why Use Analysis Patterns?
We've used patterns in structured programming and they proved to

be beneficial. When writing a new program, most programmers copied
examples of similar programs (program patterns) and modified them to
meet the needs of the new program, rather than writing from scratch and
risking simple compilation and logic errors. Structured pattern programs
proved beneficial because they saved development and maintenance
time needed for new programs and for reviewing existing programs.

When object-oriented analysis, design and programming were intro-
duced, they proclaimed the notable advantage of reuse. These procla-
mations gave hope to the idea of fast, easy software development using
reusable objects or components. Many object-oriented programmers
aren’t realizing reductions in their work efforts due to reuse. However,
Fowler’s analysis patterns will allow the proclamations to be realized in
object-oriented language solutions.

The great advantage of using patterns in object-oriented develop-
ment is the increase in productivity and therefore a reduction in cost.
Analysis patterns leverage the capabilities of the reusability of object-
oriented components. These components ease the complexity of prob-
lem solutions of new development and lower the maintenance for an
application using these components. Application builders who have
built systems using analysis patterns have experienced reduced devel-
opment time, ease of development and low maintenance costs.

Fowler’s First Pattern – The Party Pattern
The first analysis pattern described by Fowler is the Party pattern. A

Party, according to Fowler, is an abstraction to define persons or organi-
zations. He models a Party class with subclasses of Person and Organi-
zation. The Party could have different roles. For example, a person could
be an employer, employee, doctor or mother. An organization could be a
business entity, a shelter or a hospital. Figure 1 depicts the class repre-
sentation of the Party pattern.

Observation Pattern
Another analysis pattern described by Fowler is the Observation pat-

tern used to model information about the real world, generally repre-
senting attributes observed about a party. Observations play an impor-
tant role in information systems, since these observations are usually
stored in databases and rehashed to form statistical analysis of data.
Examples of observations are a person’s eye color, hair color, weight or
height. Other examples include a test score of Johnny Doe on December
4, 1999, or Jane Doe’s telephone number. The Observation pattern is an
abstraction that describes the quantification about a given attribute
type, called a phenomenon, related to a Party. As an example, a test score
type of attribute – or, as labeled by Fowler, a test score phenomenon –
has a quantification of 64, which is related to a person, Johnny Doe. For
example, Johnny Doe made a score of 64 on a particular test.

Using the Observation pattern, new observations are defined by
extending the behavior of the observation and writing new code to
define their type. From a position paper by Jospeh Yoder, “Patterns for
Developing Successful Object-Oriented Frameworks,” we realize that
there’s not only an observation in the pattern, but an observation type is
needed to describe the subject of the associated observation. Figure 2
depicts the relationship between a party as well as a portion of the
Observation pattern, including the observation and observation type.
The observation type allows modeling of the observation phenomenon
as a type. This pattern allows creation of a phenomenon, such as test
scores, without creating a different class for each phenomenon needed
within a system. One instance of the party class, such as Johnny Doe,
may have multiple instances of observations, and each of those obser-
vations is defined as a specific observation type. For example, John Doe
has an observation of blue observation type called eye color, as well as
an observation of 64 observation-type test scores.

One of the key characteristics of observations with information sys-
tems is the entry of observation information by users and the potential
database storage of that information. This input scenario requires that
information gathered from the user must be validated prior to placing
the values into database storage. Integers, entered as strings in text
fields, require validations by ensuring that first, they’re composed of the
characters 0–9 and second, that the value is indeed storable as an inte-
ger and the value of the entered data falls within the range defined by a
business rule. A salary within an organization, represented as a float,
may have a business rule that requires the salary to be more than $1 and
less than $100,000 per year. In most structured systems, the validation
routines necessary would be written into each program that allows entry
of the field. In object-oriented systems, one might call a class that con-
tains the method to validate salary. Using Fowler’s analysis patterns, val-
idation for this salary observation is done using the Validator pattern.

Validator Pattern
The Validator pattern is used in collaboration with the Observation

pattern to validate observations. This architecture allows different types
of observations to be associated with their relevant applications and
businesses. Therefore, the observation types are extended with a valida-
tor type that associates the instance of the observation type with a val-
idator strategy.FIGURE 1 Party pattern

FIGURE 2 Party associated with an observation

Party
ObservationPhenomenon:

ObservationType

Java COM

48 SEPTEMBER 2000

The Validator pattern is an abstraction that models the procedures
for validation of different types of observations using three different val-
idators. The Validator class (see Figure 3) depicts the three validators:
discrete, range and null.

When using the pattern, all observations are validated. Therefore, a
need exists for a null validator in those fields that require no validation.
The null validator is implemented using the Null Object pattern.

The Discrete validator authenticates values such as the items found
in a typical code value table. A common example of discrete validation is
eye color, in which valid values include a set with blue, green, hazel,
brown and black members. Another common example is a two-member
set representing sex as the discrete values of male or female. A user
entering data in a field with a discrete validator would view a table of
valid values and select one. This is possible if the number of values in the
code table isn’t too large. Large code tables often require the user to key
in a few characters before a table of valid values is displayed. Observa-
tions in which the valid values are extremely large may not allow the
code values to be displayed, but instead require the user to key in the
entire value before validation. This is the scenario addressed by the dis-
crete validation described in this paper.

The Range validator is used to validate an observation expected to
be within a valid range of values according to a particular business rule.
The salary, which must fall within the range of $1 to $100,000 per year,
is an example of such an observation. A range validation routine
requires a minimum and maximum value to define the valid range. The
Validator Pattern classes are shown in Figure 3, each with a method
isValid.

Not only does the validator abstraction allow users the freedom to
reuse the validator component in many different domains, it also allows
users to modify their validation requirements dynamically at runtime.

When code tables were introduced in the 1980s, the user gained the
ability to add, modify and delete values from the code table without
causing a program maintenance activity. Using the Range validator
allows the user the same freedom – to change the minimum (min) and
maximum (max) values for range-validated fields without asking a pro-
grammer to perform a maintenance activity. The Validator pattern uses
the data dictionary table to obtain the min and max values for a range-
validated field. The users have the freedom to change these data dictio-
nary min and max values. Keeping this close collaboration between the
data dictionary and the observation entry allows user control of valida-
tion rules and gives dynamic validation of observations at runtime. It
demands a data dictionary that acts more as a usable software engineer-
ing tool rather than a documentation table.

Each observation, defined in the data dictionary, is linked to an
observation type defining the validator needed for that observation. The
observation “shoe size” is defined in the data dictionary with a minimum
of four and maximum of 20. The shoe size observation type is called
Shoesize and the validator defined by that type is RangeValidator.

Building Reusable GUI Components Using the Validator Pattern
Ease of development and maintenance is the goal in using analysis

patterns. The Validator pattern allows easy building and maintenance of
observations in an application domain. It also allows development of
reusable graphical user interface (GUI) components. To show the tech-
nique of using the Validator pattern to build these reusable GUI compo-
nents, this article concentrates on the Range Validator.

The data dictionary used to store the min and max necessary for
range validation could also contain information regarding the needed
GUI component for the observation. Items that prove useful in dynam-
ically building GUI components for observations include the field
length to dictate the size of the needed textfield, observation type
(such as eye color) to attach a validator to the observation type, the
default label needed on the GUI component, a standard default mes-
sage for invalid data and the name of the validator (in this case range
validator)

To build a reusable GUI panel component responsible for validating
the users observation inputs, we define a panel named Observation
Panel. The panel contains two components: the textfield of the length
defined in the data dictionary and the label of the field with the name
taken from the data dictionary, if desired. The panel contains a field that
defines the data dictionary item contained in a vector named a data dic-
tionary (DD) vector. The structure needed for this reusable component
is shown in Figure 4.

To understand fully how these GUI components would be used with
the Observation and Validator patterns, we define a typical application
programmer building a GUI under the present technology without
analysis patterns, then with them.

A typical application program building a GUI screen follows a devel-
opment scenario similar to the one below:
1. Create the container for the screen
2. Repeat for each component needed on the screen:

a. Drag a reusable component (such as a label) on the screen
b. Change the properties for the component (size, name, position on

the screen, etc.)
c. Write the validation routine for the component entry
d. Write the error-routine display routine
e. Test properties, location, validation routine, error routine iteratively

3. Scenario complete

This scenario is time consuming and yields components that may
have inconsistent labels, error messages and sizes across multiple
screens. Even if programmers build components for each field entered,
the validation and error routine must be written and tested for each
component.

Using the analysis patterns described and a reusable bean – Obser-
vation Panel – component modeled in Figure 4, the scenario is as fol-
lows:

FIGURE 4 Reusable GUI component and the Validator pattern

DD
ObservationPanel

Validator

Party Observationphenomenon: value

ObservationType

FIGURE 3 Validator pattern

DiscreteisValid()

RangeisValid()
NullisValid()

Validator

Java COM

50 SEPTEMBER 2000

1. Create the container for the screen
2. Build the reusable Observation Panel Bean (once)
3. Test the Observation Panel Bean
4. Repeat for each needed component

a. Drag the Observation Panel Bean on the screen
b. Change the Data Dictionary Property Name for this field
c. Test property DD name is correct

5. Scenario complete

This scenario allows an expert bean builder to build and test the
Observation Panel Bean (OPB) before the application programmer
begins building the GUI screens using the OPB. The application devel-
oper reuses the Panel Bean component for each GUI component on
each screen, which reduces the design, programming and testing effort
significantly. Figure 5 shows the application developer changing the
name of the data dictionary data element with IBM’s VisualAge for
Java.

Runtime Scenarios
At runtime, the OPB displays itself and its components making itself

capable of accepting and validating the entered data. When the OPB is
displayed the following scenario happens.
1. The new GUI screen frame creates an instance of the OPB.
2. The OPB displays the label and textfield using information obtained

from the data dictionary regarding size and label.
3. The observation and observation-type instance are created. The spe-

cific validator is created using the Reflection pattern, and the needed
data such as the min and max values are loaded.

This scenario is the result of executing the code shown in Listing 1,
which includes the classes for the Observation, ObservationType, Obser-
vationPanel and DataDictionaryRecord. Not all of the code is shown –
only the parts of interest are displayed. The remainder of the code for the
Validator and RangeValidator classes is shown in Listing 2.

After the OPB is displayed with the label and textfield, the data is
entered by the user and validated with the Validator pattern as in the fol-
lowing scenario.
1. An action is performed indicating that the field is entered and ready

for validation. This may be a submit button on the GUI screen frame,
a carriage return on the textfield or other actions.

2. The OPB requests the text from the textfield using getText().
3. The panel asks the observation to validate itself. This observation field

will later hold the valid data in the needed type. The observation,
expecting to receive a notification of valid data, asks the observation

type to validate the string entered in the textfield using the validator
defined according to the data dictionary information regarding the
data type and valid ranges.

4. The observation type sends the data dictionary member to the valida-
tor for the actual validation of the string data entered.

5. If the data isn’t valid, an error routine is executed. In our case an
invalid message obtained from the data dictionary is displayed on the
panel as a label. The message is erased if the user enters more data.

6. If the data is valid, the panel requests the observation panel to convert
the valid data to the value needed.

Remember, the only action performed by the application builder was
to drag the OPB on the GUI screen frame and modify the bean property
to be the specific data dictionary element. The remainder of the actions,
from the two scenarios described above, happened as a result of meth-
ods and procedures contained in the reusable OPB, the data dictionary
and the Validator analysis pattern. This same OPB and Validator can be
reused for any data dictionary field on any GUI screen.

Conclusion
Analysis and design patterns are useful in solving problems when

defining requirements for a system, irrespective of the domain. They’re
helpful in guiding the development of reusable components. Fowler’s
Observation patterns are examples of analysis patterns that have many
variations and extensions. The OPB reusable component and the Val-
idator pattern (see Figure 4) use the Observation pattern with an object-
oriented language and its concepts to promote the reusability of the Val-
idator and the OPB. The discrete validator would be implemented simi-
larly with the name of the valid code table values contained in the data
dictionary. Use of the Validator pattern certainly changes the face of GUI
development.

While Fowler’s patterns are powerful abstractions in information sys-
tems, implementing them in different languages often leads to many
nuances and problems that require further understanding of the pat-
terns and the problems solved by them.

In the future, validation functions could be linked to observations,
composite validation rules added to composite observations, and other
GUI components and debugging tools developed. These types of
abstractions and the resulting codes do take time, but the payoff in pro-
ductivity is certainly large enough to justify the cost.

Resources
1. Gamma, E., Helms, R., Johnson, R., and Vlissides, J. (1995). Design Pat-

terns: Elements of Reusable Object-Oriented Software. Reading, MA.
Addison-Wesley.

2. Coplien, J.O., and Schmidt, D.C. (1995). Pattern Languages of Program
Design. Reading, MA. Addison-Wesley.

3. Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Reading,
MA. Addison-Wesley.

4. Grand, M. (1998). Patterns in Java. Vol. 1. New York, NY. John Wiley &
Sons, Inc.

5. Grand, M. (1999). Patterns in Java. Vol. 2. New York, NY. John Wiley &
Sons, Inc.

6. Yoder, J. “Patterns for Developing Successful Object-Oriented Frame-
works.” Workshop Position Paper, OOPSLA, 1997.

AUTHOR BIOS
Dr. Sara Stoecklin serves as graduate director in the Department of Computer and Information Sciences at
Florida A&M University where she teaches software engineering classes in industry and academia. Dr.
Stoecklin holds an MS from East Tennessee State University and a PhD from Florida State University.

Dr. Clement Allen teaches advanced Java at Florida A&M University. He holds an MS from Howard Universi-
ty and a PhD from the University of Alabama at Birmingham.

FIGURE 5 Application builder changing the Observation Panel Bean
property

stoeckli@cis.famu.edu allen@cis.famu.edu

Java COM

52 SEPTEMBER 2000

//Observation Class with a few pertinent methods
public class Observation {

private java.util.Date recordedDate;
private java.util.Date observedDate;
private int duration;
private ObservationType type;
private String observationTypeName;
public boolean isValid (String obsValue) {
return getType().isValid(obsValue);

} end isValid
} // end Observation Class

// Observation Type with pertinent methods
public class ObservationType {

private String phenomenon;
private Validator dataElementValidator = null;
private String phenomenonType;
public ObservationType(String ddElementName) {

DataDictionaryRecord ddrecord = DDManager.getMember(dEle-
mentName);

setPhenomenon(ddElementName);
setPhenomenonType(ddrecord.getDataElementType());
try {

// This uses the validator name stored in the data dic-
tionary to //
build an instance of the needed validator (either a Range

// or Discrete Validator) using the Reflection pattern.
Class validatorClass =

Class.forName("fowlerspatterns."+ddrecord.getValidator-
Name());

setDataElementValidator ((Validator)
validatorClass.newInstance());
getDataElementValidator().setDDRecord(ddrecord);
} catch(Exception e) { e.printStackTrace(); }

} // end ObservationType constructor
public boolean isValid(String obsValue) {

return getDataElementValidator().isValid(obsValue);
} // end isValid

} // end Observation Type

// Observation Panel

public class ObservationPanel extends java.awt.Panel
implements java.awt.event.ActionListener {

protected transient
java.beans.PropertyChangeSupport propertyChange;

private String fieldDataDictionaryElementName = new
String();

private java.awt.Label ivjObservationLabel = null;
private java.awt.TextField

ivjObservationTextField = null;
private Observation dataElementObservation = null;
private java.awt.Label ivjErrorLabel = null;
private boolean observationValid = true;
private String panelObservation;
private String panelObservationText;
private String errorText;

public ObservationPanel() {
super(); initialize();
} // end ObservationPanel constructor

public static void main(java.lang.String[] args) {
try { java.awt.Frame frame;

try {
Class aFrameClass =
Class.forName("com.ibm.uvm.abt.edit.TestFrame");

frame = (java.awt.Frame)aFrameClass.newInstance();
} catch (java.lang.Throwable ivjExc)

{frame = new java.awt.Frame();}
ObservationPanel aObservationPanel;
aObservationPanel = new ObservationPanel();
frame.add("Center", aObservationPanel);
frame.setSize(aObservationPanel.getSize());
frame.setVisible(true);

} catch (Throwable exception) {
System.err.println("Exception occurred in main

Panel");
exception.printStackTrace(System.out);

}

}// end main

public void actionPerformed(java.awt.event.ActionEvent e)
{

if ((e.getSource() == getObservationTextField())) {
validateThisObservation(e);

}
} // end actionPerformed

private void validateThisObservation
(java.awt.event.ActionEvent arg1) {

try {this.validateObservation();}
catch (java.lang.Throwable ivjExc)

{handleException(ivjExc);}
} // end validateThisObservation

private java.awt.Label getErrorLabel() {
if (ivjErrorLabel == null) {

try {
ivjErrorLabel = new java.awt.Label();
ivjErrorLabel.setName("ErrorLabel");
ivjErrorLabel.setText("");
ivjErrorLabel.setBounds(45, 61, 269, 23);

} catch (java.lang.Throwable ivjExc)
{handleException(ivjExc);}

}; // end if
return ivjErrorLabel;
} // end getErrorLabel

private java.awt.Label getObservationLabel() {
if (ivjObservationLabel == null) {

try {
ivjObservationLabel = new java.awt.Label();
ivjObservationLabel.setName("ObservationLabel");
ivjObservationLabel.setText("

");

ivjObservationLabel.setBackground(java.awt.Color.cyan);
ivjObservationLabel.setBounds(36, 29, 66, 23);

} catch (java.lang.Throwable ivjExc)
{handleException(ivjExc);}

}; // end if
return ivjObservationLabel;
} // end getObservationLabel

private java.awt.TextField getObservationTextField() {
if (ivjObservationTextField == null) {

try {
ivjObservationTextField = new

java.awt.TextField();
ivjObservationTextField.setName

("ObservationTextField");
ivjObservationTextField.setBounds(108, 29, 188,

23);
} catch (java.lang.Throwable ivjExc)

{handleException(ivjExc);)
}; // end if
return ivjObservationTextField;
}// end getObservationTextField

protected java.beans.PropertyChangeSupport getProperty-
Change() {

if (propertyChange == null) {
propertyChange = new

java.beans.PropertyChangeSupport(this);
}; // end if
return propertyChange;
} // end PropertyChangeSupport

private void initialize() {
setName("ObservationPanel"); setLayout(null); setSize(375,

88);
add(getObservationTextField(),

getObservationTextField().getName());
add(getObservationLabel(), getObservationLabel().get-

Name());
add(getErrorLabel(), getErrorLabel().getName());
initConnections();
DataDictionaryRecord ddrecord =

DDManager.getMember(getDataDictionaryElementName());
getObservationLabel().setText(ddrecord.getLabelName());
setErrorText(ddrecord.getInvalidObservationLabel());

Listing 1

Java COM

54 SEPTEMBER 2000

// The label size, textfield size, and panel size should
// be adjusted using the length of the label from the
// data dictionary.

setDataElementObservation(new Observation(
getDataDictionaryElementName()));

} // end initialize

public void setDataDictionaryElementName
(String dataDictionaryElementName) {

String oldValue = fieldDataDictionaryElementName;
fieldDataDictionaryElementName = dataDictionaryElement-

Name;
firePropertyChange

("dataDictionaryElementName", oldValue,
dataDictionaryElementName);

} // end setDataDictionaryElementName

public void validateObservation() {
/* Perform the validateObservation method. */
getErrorLabel().setText("");
setObservationValid(true);
setPanelObservationText(getObservationTextField().get-

Text());
setObservationValid

(getDataElementObservation().isValid
(getPanelObservationText()));

if(!getObservationValid()) {
getErrorLabel().setText(getErrorText());
} // end if
} // end validateObservation

}end Observation Panel class

// DataDictionary Record class an item in DD Vector
public class DataDictionaryRecord {

private String dataElementName;
private Validator dataElementValidator;
private String min;
private String max;
private String tableName;
private java.util.Vector tableVector;
private String validatorName;
private int length;
private String labelName = new String();
private String dataElementType;
private String invalidObservationLabel;

} // end DDRecord class

// validator class

public class Validator {
protected DataDictionaryRecord dDRecord;
public boolean isValid(String obs) { return false;} //

end isValid
} // end validator class

// RangeValidator Class
public class RangeValidator extends Validator {

public boolean isValid(String obs) {
int obsInt;
if(getDDRecord().getDataElementType().equals("integer")) {

// validate that obs is an integer
// ‚Ä¶.
try {obsInt = Integer.parseInt(obs);}
catch(NumberFormatException e) {return false;}
// validate that obs meets the rules of min and max
int maxInt = Integer.parseInt(getDDRecord().getMax());
int minInt = Integer.parseInt(getDDRecord().getMin());
return (((minInt <= obsInt)&&(maxInt>=obsInt)));

} // end if
return false;
} // end isValid

} // end rangevalidator

Listing 2

J D B C B A S I C S

Programming with Databases Using Java

WRITTEN BY
ROBERT J. BRUNNER A

primary benefit of using the Java programming lan-
guage is the wide range of packages available for sim-
plifying a variety of programming tasks. One of these
tasks is to provide a persistent storage for Java pro-
grams.Actually, this can be accomplished using sever-
al different techniques, including Serialization, SQLJ,
JDBC and eventually JDO.

JDBC – a must-have tool for your programming toolbox

Java COM

56 SEPTEMBER 2000

JDBC (Java Database Connectivity) is
routinely covered by many different
authors in varying detail; however, the
fundamental basics of using it to con-
nect a Java application to a database is
often casually discussed or, worse,
ignored completely. With the spread of
CASE tools for simplifying Java–data-
base interactions (using, perhaps, EJB),
many users have become insulated from
the actual details of what is going on
“under the hood.”

This is a critical point in really under-
standing what your application is doing,
especially when you consider that you
might want to connect to a database
from a variety of Java applications,
including applets, servlets, JavaServer
Pages, Swing applications and Enter-
prise JavaBeans. This article provides a
gentle introduction to the fundamentals
so you can eventually tackle more chal-
lenging projects with greater confi-
dence.

Before delving any further into the
details of JDBC, let’s make sure we all
understand what JDBC does and doesn’t
do. Primarily, JDBC encapsulates the
specifics of connecting to a database,
sending SQL statements over the estab-
lished connection, and processing the
results from executed SQL statements.
In addition, JDBC provides access to
specific metadata (data that describes
data) for both the database you’re work-
ing with and the metadata for the result
of the SQL query.

The phrase “JDBC encapsulates…”
implies two things. One, that the JDBC
API is composed primarily of interfaces.
This is important, because it indicates
that someone else must supply the imple-
mentation, better known as the JDBC dri-
ver (which we’ll explore later in this arti-

cle). The second point is that the JDBC
API hides the differences between differ-
ent databases, which allows you to
migrate your application quickly between
different database vendors. If you’re not
careful, of course, there’s enough flexibili-
ty within the JDBC API to quickly tie your-
self to a database vendor through the use
of specific functionality. However, by fol-
lowing good object-oriented program-

ming practices (also known as best prac-
tices), any potential liabilities can be min-
imized.

JDBC Architecture
The basic JDBC architecture (which

roughly translates to the JDBC 1.2 API) is
remarkably simple, given all that it’s
designed to accomplish. Essentially,

FIGURE 1 Outline of the JDBC architecture

JDBC Driver Manager

Java Application

JDBC ApplicationProgramming
Interface

Type 1

Database Client Library

Database Server

Type 2 Type 3 Type 4

ODBC API
Database Middle-ware Protocol

Java COM

58 SEPTEMBER 2000

J D B C B A S I C S
vendors who implement the JDBC API
must shoulder the burden of providing
the detailed implementation, but that’s
a good thing for you as a consumer, of
course, as it spurs competition. JDBC
was designed to provide a “call-level”
SQL interface for Java applications,
which means that a user must have a
working knowledge of SQL to actually
use JDBC.

While this might seem counterpro-
ductive, it actually works to your advan-
tage as it simplifies the development of
tools, either custom developed or com-
mercially produced, that can automate
the complexities of database program-
ming in Java. As an example, tools for
creating Java classes from database
schema (and vice versa), known as
schema mapping, can be purchased
from several major vendors.

The architecture that results from
using JDBC to handle database interac-
tions with a Java application is outlined
in Figure 1. It may appear a bit confus-
ing at first glance, but that’s primarily a
result of the flexibility inherent in the
JDBC model as well as in the four types
of JDBC drivers (discussed later). Any
Java application (e.g., an applet, servlet
or JSP) that uses the JDBC API to com-
municate with a database system will
utilize an appropriate JDBC driver to
handle all interactions with the data-
base.

Interestingly enough, the developer
doesn’t directly control which driver is
used; this is handled by the Driver Man-
ager (note that JDBC 2.0 introduces an
alternative, the Data Source Object,
which uses a slightly different architec-
ture). This design allows a single appli-
cation to interact with different databas-
es using different JDBC drivers. In fact,
the Driver Manager will select the
appropriate driver object to use from
the pool of drivers that it knows about
based on the database contact informa-
tion (the JDBC URL) supplied by the
developer.

The rest of the information flow
through the JDBC architecture depends
on the specific type of JDBC driver used.
The drivers come in four different fla-
vors, cleverly named by Sun Microsys-
tems as Type 1, Type 2, Type 3 and Type
4.

As previously indicated, the Type 1
driver is the Sun-provided JDBC–ODBC
bridge, which translates the JDBC API
into the Microsoft-developed ODBC API.
Using this bridge, a Java application can
interact with any ODBC-aware applica-
tion, including the entire Microsoft
Office suite. However, this simple flexi-
bility introduces an extra layer of indi-
rection, which, among other things, can

severely limit performance: not only
does the JDBC have to be transformed
into ODBC, but the ODBC must be trans-
formed into the application’s own API,
typically involving the equivalent of a
database client library API.

On the other hand, the Type 2 JDBC
drivers (also known as partial Java dri-
vers) translate the JDBC API directly into
the database client library API, reducing
the level of complexity. This requires
that the client (the machine running the
Java application) must be running a
subset of the (possible binary) code

from the database-specific client API.
This probably requires an extra license
per client, as well as potential code dis-
tribution nightmares (for example, does
your database vendor support all of your
potential client platforms? How will you
keep all of your clients synchronized
with the latest version of the database
libraries?).

Type 3 drivers are written in pure
Java, and as a result overcome many of
the limitations of the previous two types
of drivers. This class of JDBC drivers
communicates in a middleware proto-
col that provides an extra layer of flexi-
bility. The middleware component can
interact with many different database
systems as this type of driver provides a
server (i.e., the middleware component)
that handles the specific database com-
munications, allowing different applica-
tions to use the same JDBC driver to
communicate with different database
systems.

The Type 4 driver, also a pure Java
driver, communicates directly with the
database server in a database-specific

protocol. This architecture, while con-
ceptually the cleanest, isn’t optimized
for any specific hardware and operating
system platforms (which can be done
for Type 3 drivers). Instead, it’s generally
optimized for a specific database server,
and as a result can provide significant
performance benefits if you don’t mind
being tied to a specific database system
(e.g., Oracle).

Choosing the Storage
The first step in designing a JDBC

application, of course, is to select the
database to use, never an easy task,
especially in a “team” environment. In
fact, if you’re working on a corporate
LAN, your ability to pick and choose a
database system may be significantly
limited due to security restrictions.
(This results from the fact that most
database systems will need to run as a
daemon that will likely provide a net-
work accessible port – a major security
concern if not done properly.) On the
other hand, a corporate LAN may
already have both a database system
and a JDBC driver available, which can
easily be used for evaluation on new
projects.

Assuming free reign on picking a
database, three different classes of
database systems can be used to devel-
op JDBC applications. The first class is
simple databases, of which Microsoft
Access is the best example. These are
generally so prolific in their distribu-
tion that you can ususally find one
readily available. In fact, using the
JDBC–ODBC bridge driver provided by
Sun with the JDBC API, you can treat
any data source that has an ODBC
interface as potential persistent stor-
age. Although these systems can be
useful either for learning how to pro-
gram with JDBC or for very simple Java
database applications, they’re not rec-
ommended for Internet-based applica-
tions (e.g., e-commerce) as they’re not
designed for large traffic volume or dis-
tributed transactions.

The second class is lightweight data-
base systems, which generally, at a min-
imum, provide a basic persistent storage
implementation but without a signifi-
cant amount of the bells and whistles
found in the next class of systems. Many
of the databases that fall into this class
are either open source or very reason-
ably priced. For example, mSQL is a
moderately powerful relational data-
base system that is free for noncommer-
cial applications. Another product that
falls in this category is MySQL, which
has rather liberal licensing policies,
including a GPL for specific versions.

‘‘

’’

The first step in
designing a JDBC

application, of
course, is to select

the database to
use, never an easy

task, especially
in a‘team’

environment

J D B C B A S I C S

AUTHOR BIO
Robert Brunner is a

member of the research
staff at the California
Institute of Technology,

where he focuses on very
large (multiterabyte)

databases, particularly on
KDD (Knowledge

Discovery in Databases)
and advanced indexing

techniques. He has used
Java and databases for
more than three years,
and has been the Java
database instructor for
the Java Programming

Certificate at California
State University Pomona

for the past two years.

The final class of database systems
includes the household names (well,
maybe only those households that are
occupied by programming enthusiasts
or Internet investors) of the database
industry, including Oracle, Sybase, SQL
Server and Informix. These systems are
powerful, full-featured, network-ready
software systems that are “ready for
prime time” straight out of the box. Of
course, the old adage that you get what
you pay for certainly applies here, as
these systems can take a major bite out
of your wallet. However, if you’re devel-
oping an e-commerce site, these sys-
tems are generally preferred due to their
high performance standards, as well as
their ability to scale along with your
application. Finally, these systems often
provide value-added enhancements
such as the ability to serve as EJB con-
tainers and SQLJ interfaces, and include
a well-stocked toolbox. In general, full-
featured versions of these database sys-
tems are available for evaluation.

Finding the Right Driver
Once a database has been selected,

the last step before jumping into writing
code is to choose an appropriate JDBC
driver. Fortunately, this last step has been
simplified by the Sun JDBC team. A Web
page at the JavaSoft Web site (see Figure
2; http://industry.java.sun.com/prod-
ucts/jdbc/drivers) provides a simple
form that you can use to find all drivers
that have been registered with Sun. On
this form you enter specific information
regarding your project’s requirements –
for instance, a specific database system
or version of JDBC. As a demonstration,
Figure 3 shows the form filled out to find
all drivers that support the JDBC 2.x API
and connect to an Oracle database. As of
late spring 2000, the driver query
returned eight separate drivers. As can be
seen in Figure 4, the query returns not
only the name of the driver, but also its
type, the JDBC version it supports, the
database systems it supports as well as
any supported JDBC standard exten-
sions, and the date of availability.

Conclusion
This article will hopefully prepare

newcomers for the more specific JDBC
example articles and discussions com-
monly available. Programming with
databases using Java is a rewarding and
challenging task, and for those who
enjoy working on cutting-edge technol-
ogy, a must-have tool for their program-
ming toolbox.

rjbrunner@yahoo.com

Java COM

60 SEPTEMBER 2000

FIGURE 2 JavaSoft driver query Web page

FIGURE 3 JavaSoft driver query Web page as completed to find a JDBC 2.x
Oracle-compliant driver

FIGURE 4 Result of the driver query shown in Figure 3

Java COM

62 SEPTEMBER 2000

The Web is moving to wireless and Java is making it happen! How

is a wireless environment different from the Web? What languages are used

for wireless devices and what features do they have? Most important, what

role does the Java 2 Enterprise Edition (J2EE) play in a wireless architecture?

Wireless vs Web
There are several key differences between clients in a Web world and

those in a wireless world. For example, in the wireless world network
connections have a lower bandwidth and a higher latency than a typical
Internet connection. Also, wireless connections are unstable and unpre-
dictable since they’re built on a wireless network – a fact you’re likely
familiar with from your cell phone service! The Wireless Access Protocol
(WAP) was created to address network computing in this restricted envi-
ronment. It defines two key aspects of wireless communication: an end-
to-end application protocol and an application environment.

As shown in Figure 1, the WAP’s end-to-end application protocol is
built on three major components: an application server, a WAP gateway
and a wireless device. The WAP gateway is responsible for routing and
translating WAP data on the wireless network to and from HTTP data on
a TCP/IP-based network such as the Internet. Some WAP gateways even
convert HTML to languages that WAP-enabled devices can understand
in a process called transcoding. The end-to-end aspect of the WAP pro-
tocol consists of four layers carried by various bearers or providers. Fig-
ure 2 compares the WAP protocol stack with a typical Internet one.

WRITTEN BY KRISTIAN CIBULSKIS

J D J F E A T U R E

Java COM

64 SEPTEMBER 2000

In addition to the end-to-end application protocol, the WAP specifi-
cation also defines the application environment. This environment con-
sists of a WML browser for rendering content and a script interpreter for
executing applications on the user device. The Wireless Markup Lan-
guage (WML) defines the content to be rendered by the browser using
WMLScript as the scripting language. This is analogous to the Internet
environment in which HTML is rendered by the browser and JavaScript
is the scripting language.

The application environment was included in the WAP specification
to ensure that the myriad of WAP-enabled devices can execute the same
applications. No doubt you’re familiar with browser compatibility prob-
lems on the Internet. Imagine if every cell phone manufacturer created
their own proprietary browser – there would be hundreds maybe thou-
sands of different browsers. What a mess!

WML and WMLScript
WML is similar to HTML in its structure and elements. However, two

major distinctions are worth mentioning. The first is that WML is a sub-
set of XML and all the rules regarding standard XML apply. This means
that the entire WML document must be well formed and adhere to a
DTD that describes all WML documents. The second is that WML pro-
vides extremely limited control over presentation. If you thought HTML
was restrictive, wait until you start playing with WML. These severe
restrictions allow for flexibility on the rendering device. Only the lowest
common denominator can be assumed across all client devices. It’s not
just missing attributes in WML tags. Even the rendering of individual
tags can appear radically different on different phones. The model for
WML rendering, however, is quite similar to Java’s approach. Each plat-
form has the freedom to determine how to render a particular widget, as
long as it achieves the intended functionality in a manner consistent for
that platform. Although the language definition and functionality is rigid
to ensure compatibility, the implementation is loosely defined to enable
support for a wide variety of devices.

WMLScript is analogous to JavaScript as it’s executed on the client
browser. WMLScript provides a basic set of libraries to perform string
manipulation, math functions, URL facilities and interaction with the
WML browser. Additional libraries are being developed that allow the
WMLScript programmer to access telephony aspects of the device, such
as dialing a phone number or accessing the phonebook. WMLScript’s
purpose is to provide a richer user environment over static WML.

The easiest way to begin learning both WML and WMLScript is to work
with an example. Listing 1 is an extremely simple business model: pur-
chasing your favorite java-based product, such as a cup of coffee or a latte.
A user can select the items for purchase, calculate the total and check out.
The basic application flow is shown in Figure 3. The code was developed
and simulated under Nokia’s WAP SDK (see “References” for links).

Let’s look at the code for the main WML page in Listing 1.
• Lines 1–2: Standard XML syntax that indicates this document is XML

and conforms to the DTD specified at www.wapforum.org/DTD/
wml_1.1.xml.

• Line 3: The root of a WML document is the <wml> element, similar to
the <html> element of an HTML document. Since it’s an XML docu-
ment, it must be well formed. Without the <wml> element and the
corresponding </wml> element at line 39, the document won’t be
processed.

• Line 4: The basic working unit of a WML document is a card. A WML
document, or deck, can be composed of one or more cards. Each card
is completely self-contained and represents an individual interaction
with the user. Due to the high latency inherent in wireless connec-
tions, a collection of related cards is transmitted in one deck to
improve overall performance for the end user.

Each card must have a unique identifier specified by the ID attribute.
A title for the card can be specified as well. The title is usually dis-
played across the top of the screen, but that can change due to the cre-
ative liberty the browser takes during rendering. The newcontext
attribute indicates that each time this card is entered, any variable or
state should be reset. Since this first card is a splash screen, it’s a good
place to reset any variables that may be lingering in the context of the
browser. The final attribute is set in line 4 in the ontimer attribute. The
value for the ontimer attribute is a URL, which can be either a com-
plete location, such as http://java.sun.com, or simply a bookmark
that references another card in this deck, such as #main. In this case,
when a timer expires within this card, the user will be directed to the
card identified as “main.”

• Line 5: This single line sets the timer referred to in line 4. The value for
this tag indicates a length of time in tenths of a second until the timer
expires. Once the timer expires, the ontimer event is triggered.

• Lines 6–13: This looks like standard HTML. The display tags of WML
are extremely similar to HTML, although they’re severely restricted
when it comes to adjusting the display of data. For example, there’s no
tag to set the vertical alignment of the columns within a table. Howev-
er, if you’re familiar with HTML, you can probably jump right into
writing WML display logic.

Although HTML and WML provide functionality for displaying
images, the WML specification only allows for WBMP image types.
Many freeware converters and plug-ins can convert existing image
files into WBMP format. However, since most phones are monochro-
matic, images that are converted from a high-resolution color source
may need some tweaking in order to display nicely.

FIGURE 1 Wireless architecture

InternetTranscoder

WAP
Gateway

Web Server
(WML)

Web Server
(HTML)

WAP
Device Wireless

Network

WML-HTTP

WML-WTP

HTML-HTTP

FIGURE 3 Application flow

CHECKOUTTIMER

Splash
Screen

(WML/JSP)

Checkout
(WML/
Servlet)

Entry
Screen

(WML/JSP)

Calculate
Total

(WML Script)

CALCULATE TOTAL

FIGURE 2 WAP and Internet protocol stacks

Wireless Datagram Protocol (WDP)
Bearers (SMS, USSD, CDMA, CDPD, etc.)

HTML
JavaScript

INTERNET

HTTP

TLS-SSL

TCP/IP
UDP/IP

Wireless Application Environment (WAE)

WAP

Wireless Session Protocol (WSP)
Wireless Transaction Protocol (WTP)

Wireless Transport Layer Security (WTLS)

Java COM

66 SEPTEMBER 2000

• Line 15: This is the beginning tag for the main card in our application.

• Lines 17–18: Here are our first input elements. Unlike HTML, there’s
no need for a <form> tag to enclose your input fields. Later on we’ll see
how these elements make it into the next request. For now, these input
elements set the value of local variables within the browser context.
The name of the variable is indicated by the name attribute in the
input tag. These variables can be displayed elsewhere on the page
with the syntax $(variablename). To display a single dollar sign, a dou-
ble dollar sign ($$) is used.
It’s worth mentioning the format attribute for an input tag. This attribute

indicates to the rendering device what sort of character patterns are
acceptable as input. For example, the format mask in line 17 indicates that
an arbitrary number of alphanumeric characters may be entered, where-
as the format mask in line 18 indicates that only four characters may be
entered. Format masks may also contain characters to be inserted into the
input field. These characters are indicated by prefixing the character with
a \ in the format mask. For example, the format mask “NNNNN\-NNNN”
could be used to format a zip code entry field by supplying a dash between
the first five numbers and the last four numbers during entry.

The final attribute used for input elements is the title element. It’s
often used when entry for an input field actually takes place on a spe-
cial edit screen. The WML browser can display this title on that screen
for identification purposes.

• Lines 19–25: The <select> element, also similar to HTML, provides a selec-
tion list that enables multiple selections as determined by the multiple
attribute. In this example we want our clients to be able to purchase more
than one item at a time, so the multiple attribute is set to true. Enclosed
within the select element are the various choices or options to be dis-
played. The text within the element is displayed to the user, while the value
attribute indicates the value assigned to the variable that’s defined by the
name attribute in the select tag. For a multiple selection element the val-
ues will all be placed into this variable with semicolon delimiters.

• Line 26: This line displays the contents of the totalPurchase variable.
Since we haven’t defined it yet, the rendering agent will display a blank
value. We’ll update this variable using WMLScript in just a bit.

• Lines 27–29: The <do> tag is one of the few action tags available in
WML. The type attribute indicates what sort of action is required. This
value determines which physical button should be linked to this
action. You don’t have much control over which button is chosen. On
most phones the accept type used in this example is linked to the OK
button on a mobile phone. Other types include prev, help and delete.
Enclosed within the <do> tag is the action to be performed – in this
case, to navigate to another URL. This is actually a call to a WMLScript
function, so we’ll hold off.

• Lines 30–36: We have another <do> tag here with the same action type,
which is perfectly legal; the user agent determines how to render it. On
many cell phones it’s rendered by providing a menu to select which action
to perform when the button linked to this type is pressed. Here we’re nav-
igating to a different URL. The method attribute indicates whether we’re
performing a GET or a POST operation to this URL. And a new tag is
enclosed within the <go> tag. The <postfield> tag is used to add data to a
request string. The name/value pairs are provided as attributes to the
<postfield> tag, and it’s up to the WML browser to properly add these to the
request as a query string in the case of a GET or as data fields for a POST.

At this point we have a nearly functional application. The only myste-
rious functionality is the URL defined in line 28, which doesn’t look like a
standard HTML or WML page location. This location is actually the syntax
for calling a WMLScript function. The first part of the location, Java-
Cafe.wmls, identifies the location of the WMLScript library in which the
function is contained. The second part of the URL, #calculateTotal, identi-
fies the function we want to call. The final part of the URL, (‘$(purchase)’),

passes along the value of the variable purchase as a parameter to this func-
tion. The actual syntax of WMLScript is fairly similar to JavaScript, so let’s
look at Listing 2 to see what the JavaCafe.wmls code is doing.
• Line 1: It declares the method signature for this function. The keyword

extern indicates that this function may be called from outside this
package, similar to the public keyword in Java. Our function takes a
single parameter named inputPurchase. It’s not necessary to declare
the type of the parameter since WMLScript is a weakly typed language.
Data is converted automatically from one data type to another on the
fly by the script execution engine.

• Lines 2–4: Declare and initialize three variables. Again, variables are
weakly typed so no data types are required. The function call in the
initialization of the purchase variable translates the escaped character
string required by HTTP back into a standard string. For example, %20
is translated back into a space character.

• Lines 5–17: This simple “for” loop iterates over the values in the pur-
chase variable that are separated by semicolons. The elements
method counts the number of elements in the string separated by the
provided delimiter. The elementAt method returns the nth element of
the string delimited by the provided delimiter. The “if” block is then
used to calculate the total price of the order.

• Line 18: This is the key of the entire script. The call to
WMLBrowser.setVar sets the value of a variable in the scope of the
WML browser to the supplied value. Here we’re changing the value of
the totalPurchase variable, which is displayed in line 25 of
JavaCafe.wml. The String.format method, which is similar to the C
function printf, is used to perform basic message formatting.

• Line 19: The call to WMLBrowser.refresh() causes the WML browser to
redisplay the current card with the latest variable information. How-
ever, this refresh is performed on the browser side. No trip back to the
server is required.

A look at this example shows the similarities between WML/WMLScript
and HTML/JavaScript to be fairly obvious. Although WML/WMLScript
doesn’t provide as much functionality as HTML/JavaScript, the basic pur-
pose of each technology remains the same. WML and HTML are used for
displaying a page of information, while WMLScript and JavaScript allow for
a more interactive user experience within a page. However, one question
remains: How do we generate dynamic content for the WML decks?

JSPs, Servlets and Wireless Devices
Although there are many variations within J2EE architectures, in gener-

al, JSPs develop presentation-oriented dynamic content and servlets
process user input and perform conditional navigation. Ideally, all your
business logic would be located outside the JSPs and servlets in either EJBs
or pure Java classes. Once the business logic tier is written, different presen-
tation layers, such as WAP, can provide the interface to the business logic.

This paradigm is extremely applicable in current Internet technology.
Many businesses operate transactional HTML sites. If their business
logic is kept separate from the presentation logic, providing a new pre-
sentation layer such as WAP while still using a common layer for busi-
ness functionality is a fairly straightforward process.

A few simple changes need to be made to enable our JSP/Servlet
engine to serve up JSPs to a wireless device. The first set of changes must
be made to the Web server that serves up the output of the JSP/Servlet
engine in order to recognize the new MIME types for the content being
displayed. Table 1 shows the typical MIME types.

To set the proper MIME type the next change must be made to the
pages or decks. We can rename JavaCafe.wml from Listing 1 to Java-
Cafe.jsp and simply add the following code after line 2:

<%@ page contentType="text/vnd.wap.wml" %>

Java COM

70 SEPTEMBER 2000

After these changes, your JSP/Servlet engine shouldn’t have a prob-
lem serving up JSPs to a simulated WAP device. Of course, to serve up
these responses to an actual WAP device you’d need a WAP gateway that
linked your network to the cellular network. However, the JSP/Servlet
engine setup would remain the same.

Using servlets in this model is just as simple. For example, the Check
Out action (see Listing 3) directs the user to a servlet, then returns a simple
WML deck with a Thank You message that includes the user’s name. The
user’s name was retrieved as a field posted in the request to this URL. It’s a
simple modification to change this servlet to interact with any existing Java
purchase logic. However, keeping in line with the clean separation of busi-
ness and presentation logic, this servlet could also make calls to the busi-
ness tier to perform the required business logic for checkout, then redirect
to a JSP page to produce the presentation to be returned to the mobile user.

Industry Support
Nearly every application server on the market is moving to support wire-

less in some fashion. At the most basic level, any Web server or JSP/Servlet
engine can become WAP-enabled simply by defining the MIME types dis-
cussed above. However, many application servers are beginning to offer
transcoding-type services. Transcoding services provide a semi- to fully auto-
matic way to convert existing HTML or XML pages to WML. The idea is that by
using a transcoding application server, your existing site will be available to
any wireless device with a minimal amount of modification to existing code.
Many application server vendors are also partnering with wireless vendors to
provide a complete end-to-end wireless technology stack in a single solution.

Conclusion
The Internet revolution has spawned billions if not trillions of dollars

in new revenue streams. This is due in large part to the huge number of
previously isolated people who are now empowered by the PC and the
Internet to communicate in an easy and effective manner. Wireless tech-
nology extends the Internet’s entry point beyond the PC. The number of
wireless phones is predicted to surpass the number of land-based
phones within the next three years. Most of them will be connected to
some sort of wireless data service, which in turn will be connected to the
Internet. The impact of this vast number of Internet clients is unimagin-
able. However, the implementation success that Java has had in the B2B
and B2C space easily translates over to the wireless paradigm. In terms
of scalability, reliability and maintainability, all the J2EE features can still
be used in nearly the same way. Although it’s certain that wireless archi-
tectures will evolve over time, Java will be there to help blaze the way.

References
1. Nokia’s WAP information center, free SDK available: www.nokia.com/

corporate/wap
2. Home of the WAP specification: www.wapforum.org
3. Great repository of information on wireless technology: www.Any-

whereYouGo.com
4. Another excellent wireless developer portal site: www.phone.com

AUTHOR BIO
Kristian Cibulskis is an architect at Sapient Corporation in Boston, where he works with the Enterprise Java
competency group. He holds a BS in computer science from Cornell University.

TABLE 1 WAP MIME types

FILE EXTENSION MIME TYPE
wml text/vnd.wap.wml
wmls text/vnd.wap.wmlscript
wmlc application/vnd.wap.wmlc
wmlsc application/vnd.wap.wmlscriptc
wbmp image/vnd.wap.wmbp

1: <?xml version="1.0"?>
2: <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
3: <wml>
4: <card id="splash" title="JavaCafe" newcontext="true"

ontimer="#main">
5: <timer value="30"/>
6: <p>
7: <table columns="2">
8: <tr>
9: <td></td>
10: <td><small>Welcome to the JavaCafe</small></td>
11: </tr>
12: </table>
13: </p>
14: </card>
15: <card id="main" title="JavaCafe">
16: <p>
17: UserId: <input name="userid" title="UserId:" format="*M"/>
18: Pin: <input name="pin" title="PIN:" format="NNNN" />
19: Purchase:
20: <select name="purchase" title="Purchase" multiple="true">
21: <option value="COFFEE">Coffee</option>
22: <option value="MOCHA">Mocha</option>
23: <option value="LATTE">Latte</option>
24: <option value="TEA">Tea</option>
25: </select>
26: Total: $(totalPurchase)
27: <do type="accept" label="Calculate Total">
28: <go href="JavaCafe.wmls#calculateTotal('$(purchase)')"/>
29: </do>
30: <do type="accept" label="Check Out">
31: <go href="http://localhost:7001/Checkout"

method="post">
32: <postfield name="userid" value="$(userid)"/>
33: <postfield name="pin" value="$(pin)"/>
34: <postfield name="purchase" value="$(purchase)"/>
35: </go>
36: </do>
37: </p>
38: </card>
39: </wml>

1: extern function calculateTotal(inputPurchase) {
2: var total = 0;
3: var purchase = URL.unescapeString(inputPurchase);
4: var currentItem;
5: for (var i=0; i<String.elements(purchase, ";"); i++) {
6: currentItem = String.elementAt(purchase, i, ";");
7:
8: if(currentItem == "COFFEE") {
9: total += 1.25;
10: } else if(currentItem == "MOCHA") {
11: total += 2.25;
12: } else if(currentItem == "LATTE") {
13: total += 2.00;
14: } else if(currentItem == "TEA") {
15: total += 0.85;
16: }
17: }
18: WMLBrowser.setVar("totalPurchase",

String.format("$%5.2f",total));
19: WMLBrowser.refresh();
20: }

1: import javax.servlet.*;
2: import javax.servlet.http.*;
3: import java.io.*;
4: public class Checkout extends HttpServlet {
5: public void doPost(HttpServletRequest req, HttpServle-

tResponse res)
6: throws IOException {
7: // Must set the content type first
8: res.setContentType("text/vnd.wap.wml");

9: // Now we can obtain a PrintWriter
10: PrintWriter out = res.getWriter();
11: out.println("<?xml version=\"1.0\"?>");
12: out.println("<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD

WML 1.1//EN\""+
"\"http://www.wapforum.org/DTD/wml_1.1.xml\">");

13: out.println("<wml>");
14: out.println("<card id=\"checkout\" title=\"JavaCafe\" >");
15: out.println("<p align=\"center\">Thank You "+

req.getParameter("userid") +"!</p>");
16: out.println("</card>");
17: out.println("</wml>");
18: }
19: }

Listing 3

Listing 2

Listing 1

kcibulskis@sapient.com

alexr@fiorano.com

A P P B U I L D I N G

The Challenges of Developing
Distributed Java Applications

WRITTEN BY
PETER VARHOL I

n just a few years the Java language and platform has become
the technical approach of choice for building complex, dis-
tributed and Web-enabled applications across the enterprise.
Thanks to its cross-platform runtime environment, object-
oriented development model, and facilities for working with
object request brokers and other code components, Java is
well equipped for building such applications.

Build reliable, high-performance applications and components with Java technology

Java enables software developers to
provide seamless communication and
application access to the rapidly grow-
ing world of Internet computers and
communications devices, from UNIX
servers and PCs to cell phones and
beyond. IDC Research estimates that
the Java products market will grow by
85% annually through 2004.

Java applications – especially those
designed to work with other applica-
tions and components (often written in
other languages) in a distributed envi-
ronment – have different development
requirements than traditional applica-
tions. For example, Java’s execution
model virtually eliminates traditional
memory errors, but can introduce per-
formance problems stemming from
poor resource utilization. For those used
to addressing traditional programming
errors and other issues, Java’s unique
execution model and language charac-
teristics may make building error-free
and efficient applications more difficult.

The distributed nature of many Java
applications can also make it difficult to
pinpoint performance issues or diag-
nose programming errors. As a result,
Java developers need software develop-
ment tools and techniques for viewing
and analyzing code execution on multi-
ple systems on the network and from
multiple code bases.

Issues Surrounding the Development
of Distributed Java

Java is unique – it’s a mainstream pro-
gramming language that works like no
other. Its rules aren’t well understood yet by
many application developers. Part of the
reason for this is that its capabilities and
limitations haven’t been fully explored.

As a result, while many of the prob-
lems may be similar, recognizing them
and knowing what to do when you find
them remains challenging, even to
experienced Java developers. What fol-
lows are just a few of the development
issues and what they mean for Java.

Performance
Performance is a concern of applica-

tions written in any language. Most pro-
grammers are familiar with common
performance issues using a convention-
al language such as C with a stand-alone
or even a client/server application. Such
issues often involve improper alloca-
tion, deallocation of memory and poor
use of system APIs.

These aren’t even characteristics of the
Java language. For example, relating Java
code to how the JVM manages memory is
difficult and error-prone. However, it’s vital
to improve Java performance because its
execution model has additional overhead
that tends to degrade performance more
than native applications do.

In addition to typical performance
requirements and issues surrounding
traditional stand-alone applications, dis-
tributed Java applications must contend
with problems surrounding the interac-
tions between components running on
different systems. Performance prob-
lems may manifest themselves in unex-
pected ways or appear to be caused by
different parts of the code other than the
actual problem area. Identifying and
locating performance bottlenecks rapid-
ly is a significant challenge in distributed
application development.

Reliability
Enterprise Java applications, espe-

cially distributed ones, are often mis-

sion-critical in nature: all aspects of the
application must work perfectly at all
times. Developers and development
managers must be able to gauge the reli-
ability of their applications accurately.
While the characteristics of the language
tend to make Java applications less
error-prone, there are still plenty of ways
to introduce runtime errors.

With distributed Java applications
the reliability equation is even more dif-
ficult. It means assessing not only the
individual applications but also the
components as they interact. Java also
makes it possible to write highly thread-
ed applications that make sense in a dis-
tributed environment. But using threads
means that problems with resource con-
tention and deadlock are much greater.

Testing
Java applications face the same test-

ing problems as traditional ones. They
must be tested as thoroughly as possible
before fielded, and developers should
have a good idea of the extent of the test
coverage before certifying an applica-
tion. Distributed software systems writ-
ten in Java, however, are extraordinarily
difficult to test and debug. Because com-
ponents reside on different computers
and must work together perfectly for the
application to work properly, all compo-
nents must be tested simultaneously.

Memory Management
Since JVMs perform all the memory

management tasks for applications,
understanding the memory usage of the
underlying platform and influencing
memory allocation and use to affect
performance is difficult to do and not
intuitive. That’s especially true because
developers have no easy way of deter-

Java COM

72 SEPTEMBER 2000

A P P B U I L D I N G

Java COM

74 SEPTEMBER 2000

mining the relationship between code
and the underlying memory use. Ana-
lyzing underlying memory use is a key
component of building efficient appli-
cations (see Figure 1).

Software Tools Can Make Java
Transparent

Several of the integrated develop-
ment environments for Java are quite
good, combining visual development,
context-sensitive editing, JIT compila-
tion and runtime debugging. What they
lack, however, is the ability to determine
the efficiency and reliability of the appli-
cation, especially if it’s distributed
across several servers.

Most developers do without such
tools, due in part to the relatively poor
selection. There are many different Java-
oriented development environments,
but few tools to move code beyond the
development stage. A few tools, such as
the Compuware DevPartner for Java
suite, combine components that evalu-
ate performance issues, examine mem-
ory usage, analyze threads and track
testing progress (see Figure 2).

Many Java developers fail to recog-
nize that it’s not enough for Java applica-
tions to be debugged within the devel-
opment environment because of several
myths regarding the use of Java as a
development language and environ-
ment. One myth is that the VM elimi-
nates programming errors and bugs.
While direct memory errors aren’t usual-
ly possible in Java development, it’s still
possible for Java applications to contain
serious errors that affect the proper
operation of the program.

Another myth is that the application
developer has no control over the per-
formance of the software since the VM

manages the low-level details that deter-
mine how fast the code runs. How devel-
opers use specific language instructions
can have a significant impact on appli-
cation performance. Often a few simple

changes can greatly improve perfor-
mance if developers know their underly-
ing effect in advance.

Java development tools assist and
accelerate the development of reliable,
high-performance applications, espe-
cially distributed ones. They go beyond
the traditional development environ-
ments to include components that help
make applications more reliable and
efficient. When choosing a set of tools to
supplement those found in develop-
ment environments and improve the
reliability and performance of Java
applications, developers and develop-

ment teams should take the following
characteristics into account.
• Support for multiple, unmodified

VMs: Different operating systems
often use different JVMs with different
performance and behavior character-
istics. In addition, some Java tools
require the use of specially modified
VMs that may not represent the char-
acteristics of production systems.

To obtain accurate information to
improve the performance and reliabil-
ity of distributed Java and mixed-lan-
guage applications, developers should
select tools that run in the actual
deployment environment. This way
they can be certain that the behavior
observed and analyzed during devel-
opment and testing will be the same
once the application is deployed.

• Minimal impact on Java runtime
resources: During application testing
and analysis, the Java development
tools that are used can often be intru-
sive – their presence may influence
the test results. If developers attempt
to deploy the tools for further testing
and tuning in the production envi-
ronment, they may also encounter
unacceptable performance degrada-
tion due to high resource utilization.

If developers need accurate infor-
mation on resource utilization, per-
formance and system load, they
should consider software tools that
don’t use large amounts of Java run-
time resources. Tools with minimal
Java and computing resource impact
are more likely to provide the accurate
information needed to improve the
performance and reliability of distrib-
uted applications.

FIGURE 1 Inspecting threads and analyzing underlying memory use are essential
in building distributed Java applications.

FIGURE 2 The DevPartner Java Edition thread inspector enables developers to
visually analyze Java threads.

• Support for Web technologies such as
JavaScript and Active Server Pages
(ASP): Large distributed applications
that use Java often go beyond it to
include many different software tech-
nologies, including JavaScript and
ASP. Web software technologies can
be a source of reliability and perfor-
mance problems, and software tools
that are unable to test for and identify
these problems are of limited use.

Application developers need tools
that work with whatever software
technologies they’re using. Multilan-
guage tools, especially those that sup-
port industry-standard Web lan-
guages, provide the range of capabili-
ties needed to find performance and
reliability problems anywhere in the
application (see Figure 3).

• Ability to track Java memory utiliza-
tion to the function and line level:
Knowing you have a performance or
reliability problem isn’t any good
unless you’re able to pinpoint the
source rapidly and easily. The more
precise the diagnosis and analysis, the
faster application developers can
address the problem.

Java application development tools
should focus as specifically as possi-
ble on the exact location of a perfor-
mance bottleneck or software error,
especially for large, distributed appli-
cations. Developers working on dead-
lines need the most exacting informa-
tion possible from their tools.

• Ability to find thrashing and starva-
tion conditions graphically: Some of
the toughest software problems to
find are those that involve resource

starvation and code thrashing. These
error conditions don’t prevent the
application from running; however,
they cause severe performance bot-
tlenecks and may even cause the
application to hang while running.

The problems are especially preva-
lent in Java applications in which
multiple running threads contend for
limited virtual machine resources. To
ensure the reliability of deployed
applications, Java developers require
software tools that enable them to
identify and locate the complex com-
bination of conditions that can cause
resource starvation and thrashing.

• Ability to measure code base stability:
Rapidly changing code during debug-
ging and testing usually means that

the application may be unreliable or
needs additional testing before
deployment. Conversely, an applica-
tion with few changes to the code base
during debugging and testing will
more likely be fully tested and stable.

It’s important, therefore, for application
developers to understand how much
and how rapidly their application code is
changing during the latter stages of the
development process. An application
development tool should measure the
stability of the code base to enable both
the development team and the man-
agers to determine when the application
can be used reliably in production.

• Support for multiple operating systems:
Mixed operating environments are the
rule rather than the exception. Even if
developers code on one platform, it’s
increasingly likely that the application

will be deployed across several different
types of systems. This is especially true
of Java-based applications, which are
designed to run unmodified on multi-
ple operating systems.

Application development tools have
to support multiple development and
runtime environments to eliminate
the expense of purchasing different
tool sets for different platforms, and to
reduce the need for developer training
on multiple tool sets and platforms.

Delivering Higher Quality Java
Applications

Today’s Web-enabled, distributed
applications combine many different
technologies and are prone to perfor-
mance and reliability problems. Soft-
ware developers using Java technology
can spend a substantial amount of time
trying to resolve these problems, leading
to schedule delays and applications
with ongoing problems.

Most of the Java development envi-
ronments available are excellent for
writing small to medium-sized stand-
alone applications. It’s growing increas-
ingly difficult to write applications that
are large or distributed, and to work
with legacy components or databases.
Performance and reliability issues over-
shadow the advantages of rapid, object-
oriented development.

Visualizing these types of problems
is an important aspect of debugging,
tuning and testing applications because
developers can quickly identify and
localize the code responsible. If the
developer can see where the deadlocked
thread is, it’s easier to pinpoint the
resource that’s deadlocked and its cause.

The kinds of problems that don’t
arise or are trivial in smaller applica-
tions take on critical importance in dis-
tributed processing. By using perfor-
mance analyzers, memory profilers and
thread inspectors such as those found in
DevPartner Java Edition, distributed
application developers can be sure their
applications will run as expected.

Large-scale Java and distributed
applications are easy to write but diffi-
cult to write well. To bridge the gap
between mediocre or poorly performing
applications and highly efficient ones,
developers need to leverage software
tools that help build reliable high-per-
formance applications and components
with Java technology. Such tools would
allow Java developers to quickly and
easily identify problems in key areas like
runtime performance, memory utiliza-
tion and multithreading.

A P P B U I L D I N G

AUTHOR BIO
Peter Varhol is a technical

evangelist for the
Compuware NuMega
product line. He holds

graduate degrees in
computer science, applied

mathematics and
psychology. peter.varhol@numega.com

Java COM

76 SEPTEMBER 2000

FIGURE 3 Analyzing the performance of distributed applications

Several fun and important secrets of SQLJ will be unlocked today.
Our show will include the following numbers:
• Some magic tricks for taming the SQLJ translator to do your bidding.
• Some incantations to turn you into a SQLJ debug-mon.
• An initiation to the mysteries of execution contexts – for getting full

control over executing SQL statements – and of connection contexts.
• A happy story of brotherly love between JDBC and SQLJ.
• A map of the hidden location containing all of the remaining SQLJ

details that the wonderful folks from Java Developer’s Journal neither
would or could let me fit into this column.

Little space and much to say – let’s get started right away!

Your Own Private Translator…Is Talking Back
Don’t fret if you’re stuck and need help – the SQLJ translator may just

be able to give you what you need. Enjoy the following translator com-
mand-line options:
• sqlj -help shows a short help message with the important SQLJ com-
mand line options. And when you just say sqlj by itself this is also recog-
nized as a cry for help.

PART III

FINALE:
A SQLJ MAGIC SHOW

PART III

FINALE:
A SQLJ MAGIC SHOW

Concluding our series on SQLJ,
the standard for embedding database

SQL statements in Java programs

J D J F E A T U R E

WRITTEN BY EKKEHARD ROHWEDDER

Java COM

78 SEPTEMBER 2000

Java COM

80 SEPTEMBER 2000

The Translator-Chameleon Is Serving Up Bugs
How I wish that SQLJ translation were built into the javac Java com-

piler. But tough luck – it ain’t! The translator strives hard to make it
appear however as if the only difference is saying sqlj instead of javac.

Nice: You can freely mix .sqlj and .java source files on the command line.
The translator also has some implicit make capability similar to javac. Oh
yes, it automatically invokes your Java compiler – but you already knew that!

Nice: The translator reports error messages from your Java compiler
on the original SQLJ file and not on the generated Java file.

Not Nice: When your program throws exceptions at runtime, line
numbers – such as those issued by printStackTrace() – are shown in
terms of the generated Java files.

INCANTATION #1
Add the flag -linemap to your command line during translation. Then the translator

will fix up file names and the line numbers in those class files to show the original SQLJ
files. If you want this on by default (which it probably should have been in the first place),
then create an environment variable SQLJ_OPTIONS with the value “-linemap”. Or you
can add the line sqlj.linemap to a sqlj.properties file.

Still Not Nice: If you use Sun’s Java debugger jdb to debug your SQLJ
program, you’ll see that…this tip does not work: jdb refuses to show the
SQLJ source. No wonder — they only taught it about .java source files!

MAGIC SPELL #2
Shout -jdblinemap instead of -linemap whenever you must trick that silly little (de)bugger.

God Mode: Well, not quite…You can trace the goings-on in the SQLJ
runtime by installing a profile auditor in your SQLJ profile files (remem-
ber those pesky little .ser files that hold the static SQL information of
your program). After the usual translation and compilation you add trac-
ing with the following command:

sqlj -P-debug *.ser

Have fun drinking from the fire hose!

More Dizzying Debugging Spells
Remember the JDBC Genie? On many platforms (such as Oracle’s),

SQLJ runtime calls turn into calls to JDBC at the end of the day. You can
trace JDBC calls with DriverManager.setLogStream() (or setLogWriter).

Don’t count out them IDEs: Oracle’s JDeveloper has been supporting
SQLJ programming and debugging for a while. Other IDEs may offer
SQLJ support Real Soon Now.

Smokey Bear Says: Only you can prevent runtime bugs. You should
always provide the translator with the

–user=<name>/<password>

option, so that it can check your SQL code for real.

Become a Control Freak – with ExecutionContexts
At times you need to obtain additional information about a SQL

statement that just ran or you need to control exactly how you want SQL
statements to be executed. Take the following examples:
• The statement might have resulted in a warning (not an exception)

that you want to inspect.
• An UPDATE or DELETE statement reports the number of rows that

was changed or – respectively – removed.
• You want to set a timeout or designate a prefetch size for queries.
• You want to batch several SQL statements and have them all executed

together, rather than pay a round trip to the database for each one. In
particular, you want to combine the repeated execution of a DML
statement, such as an INSERT, an UPDATE or a DELETE that takes on

different values for its bind-variables.
All of this – and more – is available on the sqlj.runtime.Execution-

Context. Every connection context (remember, this is the SQLJ equiv-
alent to JDBC connections) has an associated ExecutionContext
which can be accessed with getExecutionContext(). Your static
DefaultContext also has one. Consider this example:

import sqlj.runtime.ref.DefaultContext;

import sqlj.runtime.ExecutionContext;

...

#sql { UPDATE emp SET sal = sal * 2 };

ExecutionContext ec = DefaultContext.getDefaultContext().getExecu-

tionContext();

System.out.println(ec.getUpdateCount() + " employees are rejoicing.");

Or, you can terminate a whole bunch of bad guys in a single batch as
follows.

String[] badGuys = { "HORRIBLE", "TERRIBLE", "NOGOOD", "VERYBAD" };

ec.setBatching(true);

for (int i=0; i<badGuys.length; i++) {

#sql { DELETE FROM emp WHERE ename = :(badGuys[i]) }; }

ec.executeBatch();

If we hadn’t issued executeBatch() explicitly, then the badGuys’ exe-
cution would happen implicitly when a different #sql statement is
encountered. Alternatively, we could have used ec.setBatchLimit(4); to
tell SQLJ to always flush a batch implicitly once 4 rows have accumulat-
ed. This convenience feature is not (yet?) offered by JDBC.

Being Well Connected – Explicitly
Until now you’ve been brainwashed. You were led to believe that there’s

only a single, static connection in your SQLJ program, set once with Default-
Context.setDefaultContext(...) and then forgotten about. Even though this
makes great marketing copy, it’s not the (only) way the world works.

If you’re connecting to more than one schema, if you’re running an applet
in a browser or if you’re connecting to the database in a multithreaded pro-
gram, then you should – nay, you must – use explicit SQLJ connections.

Don’t worry: it’s really easy. You just put the connection context
instance (or an expression evaluating to one) in those square brackets:

[context].

An example:

import sqlj.runtime.ref.DefaultContext;

...

DefaultContext ctx =

new DefaultContext("jdbc:oracle:oci8:@", "scott", "tiger",

false);

#sql [ctx] { UPDATE emp SET sal = sal * 2 };

Tip: Always use explicit connection contexts, unless you know that
your program owns the world and requires only a single, static database
connection.

Rolling Your Own Connection
Sometimes you need to distinguish between different schemas or

databases. Consider a program that establishes connections to two dif-
ferent database schemas. The PILOTS schema has personnel data, flight
hours and so on for pilots, and the JETS schema contains maintenance
and flight data of aircraft. Your program is working on two different sets
of tables, views and stored procedures. Now you need to verify your SQLJ
statements against both of these schemas. Typed connection contexts
are what let you do this. First, declare two different context types:

Java COM

82 SEPTEMBER 2000

#sql context Pilots;

#sql context Jets;

At runtime, you connect to each of the schemas using the appropri-
ate type:

Pilots pconn = new

Pilots("jdbc:oracle:oci8:@","pilots","ace",false);

Jets jconn = new

Jets("jdbc:oracle:oci8:@","jets","stratos",false);

Then the connection context type of the #sql statement clearly shows
whether you want a Pilots or a Jets connection:

#sql [pconn] { INSERT INTO pilot VALUES (....) };

// Pilots context

#sql [jconn] { UPDATE maintenance SET status = Checkup(....) };

// Jets context

Of course at translate time you also need to explain how to connect
to the database for both connection context types:

sqlj -user@Pilots=pilots/ace -user@Jets=jets/stratos MyFile.sqlj

SQLJ and JDBC: Living in Perfect Harmony
SQLJ works just fine and dandy with static SQL – where you know the

shape of SQL statements and queries beforehand. But what if your appli-
cation has to make up the WHERE clause in a SELECT statement on the
fly – guess you’d better forget all about SQLJ, right?

Not so quick – SQLJ and JDBC are actually close-knit buddies. JDBC
connections and SQLJ connection contexts are mutually convertible and
so are java.sql.ResultSets and SQLJ iterators. Let’s look at the specifics.

Connecting from JDBC to SQLJ
All connection context constructors and initializers can take an exist-

ing JDBC connection. Example:

java.sql.Connection conn = DriverManager.getConnection(....);

DefaultContext ctx = new DefaultContext(conn);

Now SQLJ and JDBC share the same session. Closing the SQLJ con-
text will also clean up the JDBC connection.

Connecting from SQLJ to JDBC
All SQLJ connection contexts have the getConnection() method that

allows you to retrieve an underlying JDBC connection. For example, if
your program uses the static default context, the following will do:

java.sql.Connection conn =

DefaultContext.getDefaultContext().getConnection();

Passing Result Sets from JDBC to SQLJ
If you want to pass off a JDBC result set as a SQLJ iterator, you can do

so with a SQLJ CAST statement:

SomeIterator iter;

java.sql.ResultSet rs = stmt.executeQuery();

#sql iter = { CAST :rs };

Why that CAST statement and not simply a Java constructor? So that
any vendor’s SQLJ runtime implementation can scrutinize that result set
very closely.

Passing Iterators fromSQLJ to JDBC
This one’s a breeze. You just call the iterator’s getResultSet() method

and – voilà – your JDBC ResultSet.

Exercise 1: Why might it be useful to convert a JDBC result set into a
SQLJ iterator or vice versa?

Jump into the Fray
Hope you enjoyed the journey, even though we’ve not yet seen all the

vistas. We stopped short of covering the new fun JDBC 2.0 features that
made it into SQLJ, such as support for various SQL LOB types, named SQL
types, DataSources and scrollable iterators. Nor did we look at how to put
iterator subclassing to use or how connection caching meshes with SQLJ or
even speculate what directions SQLJ might take in the future. Is there a
place to learn more? In my totally biased opinion (Oracle pays my bills,
after all) the vastest amount of information on SQLJ is on the Oracle Tech-
nology Network site at http://technet.oracle.com. You’ll find the world's
most humongous SQLJ manual that answers more questions than you
could ever dream of, as well as demos, samples, papers, an FAQ and so on.
Beware, though, the Oracle-specific is happily stirred in with the generic.

Better yet, do it. If you want to get involved on the standards side, sub-
scribe to the SQLJ partners mailing list at sqlj-ext@eng.sun.com. Or, if you
want to hack the SQLJ reference implementation – yep, all source, all pub-
lic domain – go to www.sqlj.org. Or download one of the SQLJ implemen-
tations from the IBM, Informix, or Oracle Web site and get started.

SUMMARY OF SQLJ SYNTAX

• Connection context declaration and use:

#sql context CtxType;

…

CtxType ctx = new CtxType(url, user, pwd, auto-commit);

#sql [ctx] { …sql statement… };

• Setting the translate-time connection for CtxType:

sqlj -user@CtxType=user/pwd …

• ExecutionContext declaration and use:

import sqlj.runtime.ExecutionContext;

…

ExecutionContext ec = new ExecutionContext();

… set properties on ec …

#sql [ec] { …sql statement… };

… retrieve warnings, update count, side-channel results, etc. from

ec …

• Using an explicit ExecutionContext and an explicit connection context:

#sql [ctx, ec] { …sql statement… };

• Casting SQLJ iterators to JDBC result sets:

SqljIterator iter;

#sql iter = { CAST :jdbc_result_set };

AUTHOR BIO
Ekkehard Rohwedder leads the SQLJ development at Oracle. SQLJ has come about as a collaboration of
many people from several companies. Special kudos go to the members – past and present – of the Oracle
SQLJ group and of the intercompany SQLJ working group.Thank you for being coauthors!

erohwedd@us.oracle.com

Moore’s Law essentially states that the proces-
sor speed for chips doubles every 18 months,
and it’s proved to be a fundamental tenet of the
high-tech industry. Milbery’s Law, on the other
hand, has been less rigorously proved. It states
that developers have to double their output
with fewer resources every time they’re asked
to do so. Machines get faster and faster and
developers get further and further behind.
One solution to this endless cycle is to
aggressively model and analyze your busi-
ness requirements before you start slinging
code. Ideally, the closer you track your soft-
ware requirements with the needs of the
business, the more likely it is that your code
will match the business requirements on
time and on budget. Toward that end I had
the chance to look at Ensemble Systems’
Ensemble Streams Professional 3.2, a busi-
ness-process tool for communicating
workflow models to end users, analysts
and teams of software developers.

Ensemble Streams Overview
Ensemble Systems was founded in

1995 as a consulting services company
with a specialization in object-oriented
technology. They offer a number of soft-
ware products in addition to providing
consulting services to clients. As soft-
ware consultants they have first-hand
experience working closely with busi-
ness analysts and client sponsors with-
in corporations. I expect the idea for
Streams grew out of their own experi-
ences helping these clients design and
implement complex applications.

Ensemble positions Streams as a tool
for bridging the gap between business

and software professionals. While you’ll fre-
quently use it to model software applications, it
can be used to model any type of business
process. The interface is designed to allow busi-
ness analysts to model out the workflow of busi-
ness process scenarios. Professional developers
can use this same “business analyst” model as
the basis for building a complete technical soft-
ware solution. Streams can bridge the gap
between business analysts and programmers
by providing tools that allow analysts to include
business terminology and workflows directly
within a UML (Unified Modeling Language)
model. This model can include actors, classes
and use cases, which can be transferred into
Rational Software’s Rational Rose tool where it
can be enhanced by professional developers
and used to generate complete applications.

Application designers and systems analysts
have rallied around the Object Management
Group’s UML. Ensemble supports standard
UML 1.3 modeling, but also lets you extend the
model with custom symbols and notations.
Streams allows you to add documents and
screenshots to your models, making them
much more than just UML diagrams. Despite
these additions, the product is a UML tool at its
core. Whether you’re a business analyst or a
professional programmer, you’ll need to have
some familiarity with UML modeling to work
successfully with Streams.

First Impressions
Ensemble provides a downloadable version

of Streams on their Web site, but I installed the
product using a CD-ROM provided with the
press package from JDJ. Streams supports Win-
dows-based operating systems and uses Demo
Shield for installation. After viewing a short pre-

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

jmilbery@kuromaku.com

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners

LLC (www.kuromaku.com), based in Easton, Pennsylvania.
He has over 16 years of experience in application

development and relational databases.

Ensemble Streams 3.2
Ensemble Systems Inc.
280-5200 Hollybridge Way
Richmond, BC Canada V7C 4N3

Phone: 604 231-9510
Web: www.ensemble-systems.com

Pricing: Streams Professional 3.2: $995/Developer

Test Environment
Gateway GPi, 196MB RAM, 30 gigabyte disk drive,
Windows 2000

Ensemble
Streams 3.2

by Ensemble Systems Inc.

REVIEWED BY JIM MILBERY

Java COM

84 SEPTEMBER 2000

FIGURE 1 Streams 3.2 interface

sentation from the CD, I installed and configured Streams Professional
in just a few minutes. Streams is licensed on either a fixed license basis
or by a series of floating licenses (all provided by Globetrotter’s FlexLM).
However, the demo version comes equipped with a 30-day trial license,
so you can get started without having to deal with licensing issues. The
Streams interface is clean and well designed, as shown in Figure 1.

Seven basic elements are part of the Streams user interface. The
various functions and commands are organized into three layers: menu
bar, toolbar and toolbox. The toolbar serves as a shortcut for options
available within the menu, while the toolbox contains all the notational
elements that can be placed within a diagram. You’re free to rearrange
elements of the toolbar and toolbox to match your preferences.

The three main elements of the interface are the drawing area,
the browser and the documentation panel. Notational elements
can be selected from the toolbox and placed on the drawing area,
as shown in Figure 1. As you add elements to your model, they’ll
appear in the browser window in an outline control, and detailed
descriptions of each selected element are displayed in the docu-
mentation editor. By default, these three views appear as docked
panels, but you can undock them into separate panels if you
wish. Status information and messages are displayed in the sta-
tus bar at the bottom of the panel.

Ensemble doesn’t provide a tutorial for Streams, but they do
provide product documentation in Adobe PDF format and a
white paper that details the process of using Streams with a fic-
tional specialty sneaker store. I used the “Runners” sample case
and example model (see Figure 1) to get my bearings with
Streams, but the document isn’t a tutorial in the classic sense of
the word. The installation CD also comes equipped with sever-
al additional white papers and PowerPoint presentations – I
wasn’t overly impressed with the written materials. It’s my guess
that most business analysts would have some trouble with
Streams unless they were already familiar with the basics of
UML modeling. Don’t get me wrong. The interface is well
designed, and it’s certainly easier to start modeling with
Streams as compared to jumping directly into the Rational Rose
2000 product (from a business-analyst perspective that is).
However, Streams still makes use of UML and you’ll need to
know UML modeling before working with the product.

The folks at Ensemble have added some clever features that make
Streams useful as a tool for defining workflows and business rules. For
example, a business analyst typically designs a workflow or a set of business
rules and then works with end users to validate the model. To facilitate this
process Streams allows the analyst to include extra elements on the activity
diagrams such as notes, hyperlinks, documents and even sample screen
designs. Thus the diagram becomes much more than a standard UML
model. When it’s time to actually build software from the model, Streams
exports the UML portions directly into Rational Rose (see Figure 2).

Ensemble provides additional products, one of which connects
Rational Rose to a number of leading Java development environments
such as Oracle’s JDeveloper. Theoretically you can then take a project all
the way “from concept to code” using Streams, Rational and the Java
IDE. However, you can also use Streams to output your project into a
series of HTML pages (see Figure 3) that can be shared with users across
an intranet. Although the HTML add-in isn’t unique to Streams, I found
it to be a nice addition to the interface. Streams generates a hierarchical
HTML index page with links for each activity and subactivity as defined
in the model. I can easily envision a business analyst working with
Streams to define workflows, then using the company intranet to share
the work-in-process with business sponsors. If you require a more rigor-
ous tool for walking users through the model, Streams provides a “story-
boarding” facility. Through this interface you can add some basic ani-
mation and extra description for the model. As the product description
states, Streams isn’t limited to software development; it can be used with
almost any business process. The CD even includes a presentation that
describes the use of Streams to build an activity-based costing (ABC)
model of a business flow. Thus those organizations looking to optimize
some of their business processes using methodologies such as ABC and
Six Sigma can also benefit from a product like Streams.

Summary
I found Streams to be a clever product for designing workflows and

software processes, and I liked the concept of working at a higher level of
abstraction from the model. You’ll need to purchase companion products
to implement these models as software, but I didn’t find this a burden-
some requirement. If you’re not familiar with UML modeling, however, I’d
suggest you invest in some UML training before diving into Streams.

P
R

O
D

U
C

T

R
E

V
I

E
W

Java COM

86 SEPTEMBER 2000

FIGURE 2 Streams RoseLink FIGURE 3 Streams HTML Output

Q:
A:

Q:
A: Q:

A:

Q:
A:

S Y S - C O N R A D I O

Interview...with Paul Chambers
PART 1

CTO OF GEMSTONE SYSTEMS (EUROPE)
AN INTERVIEW BY JASON WESTRA

JDJ: Paul, I’d like you to give us
some technology trends and talk a
little bit about GemStone’s role in
the wireless market. Tell us some of
the key players in that market right
now.
Chambers: The wireless market is a little
bit different for people in software and it’s
been driven, really, by the telecommunica-
tions industry, which makes it a bit differ-
ent. I think that if your name is on the
play list, you can see where it’s going to
go within the next few years. The sorts of
players that you’ve got in the market are
telecommunications equipment manufac-
turers and the northern mobile operators,
so you’ve got companies like Nokia and
Ericksson driving the standards, because
they have rolled out infrastructure which
you’ve got to have to support the stan-
dards. They ship the kit, like mobile
phones and small phones, which actually
can support the standards as well. So they
pretty much have a big say in how things
go. I think they’re becoming the ones to
watch in terms of companies and the mar-
ket.

JDJ: What exactly is driving this
trend in the wireless market?
Chambers: Over the next few years it’s
going to be quite a big revolution in terms
of telecommunications and technology.
With the fundamental technology out
there, you can see by the software appli-
cations and standards for applications
where they’re going to go in the next five
years. You’ve got the North American mar-
ket and the European market and the
standards are a bit different and not nec-
essarily compatible. In Europe at the
moment what we have is a GSM network
that’s operating at about 14 kilobits per
second. Now it’s just variable for data, it
supports data. You can run things like
WAP, the Wireless Application Protocol,
over there, but it’s pretty slow, and if

reception is a bit bad, it cuts even further
down to 5 or even 4 kilobits per second.
So it’s pretty primitive stuff we’ve been
running. You can do the same thing in the
United States – in the States is a standard
called CDMA, and it’s supposed to send
this sort of bandwidth and people are
learning WAP over it. So again, it’s pretty
primitive, it’s pretty slow and the key thing
that’s going to happen in Europe this year
is a new technology coming out called
GPRS, which is an upgrade to the GSM
system. Now that delivers about 115 kilo-
bits per second. That’s pretty useful and
you can start doing stuff, especially with
small sorts of applications. Another thing
that is a big difference is it administers IP,
mobile TCP/IP, so it’s always on – it’s
packet switched – so it’s moving away
from circuit-switched systems to packet-
switched systems. The same thing is going
to happen in North America as well with
CDMA 2000; it’s going to go to packet
switching. Now that’s much more interest-
ing for applications, much more usable.

JDJ: It sounds like there are a num-
ber of standards that are emerging.
How does J2EE fit in, and how does
GemStone offer it in wireless solu-
tions in the future?

Chambers: Really, it’s the ongoing world
for J2EE. I think maybe the way to view
J2EE is as an aggregator, an independent
aggregator. It’s activating information at
the back end – services and communica-
tion, data, etc. – and at the front end it’s
becoming an aggregator for different
channels out there. So the things that can
be predominant out there aren’t just the
Internet with PCs. You’re seeing digital TV,
Web phones, mobile devices – all sorts of
different devices out there. And the role
for J2EE is to be the aggregator and deliv-
er to all of them, with all the channels out
there independently. With GemStone,
what we’ve been doing is working with
clients who actually deliver wireless appli-
cations with GemStone at the back end,
so the standards, such as the servlets and
JSPs, work with most of the wireless prod-
ucts, such as the WAP application servers.
The WAP application servers, essentially,
are very much like the Web servers: they
serve up pages. They solved some of the
problems of the narrow bandwidth so
instead of binary messages to the mobile
device, they handle different protocol
stacks so they’re supporting things like cir-
cuit-switched data over GSM, circuit-
switched over CDMA here in the States.
Obviously, that rolls over into the new

technologies we were just talking about.
So they have a new set of challenges to
hit. You’ve got mobile devices, less memo-
ry, you’ve got an over-the-air network with
less bandwidth, so GemStone fits in
behind that. What GemStone actually
does is deliver more of what all applica-
tions should do. It’s delivering a level of
smartness, a level of caching. If you use a
lot of the wireless applications every
minute, oh man, they’re bad! And, if you
can put a smart system like GemStone
behind the scenes, you can get much
more user-friendly, much smarter systems.
When you remove that, you get interrupt-
ed, you lose the connections, etc., etc. You
need some smartness both from the
device and on the back end so that you
can resume correctly, so you can remem-
ber what you were doing. That’s a key bit
with GemStone – to be smart. And the
final piece is robust, scalable, delivering to
a high through-put. If you look at the vol-
ume, certainly in Europe the number of
people who have wireless connections
over PCs is about two and a half times
fixed-line access – two and a half times in
the mobile world, and the rest of it is
going to be so upset by things like digital
TV. Both of those platforms are going to
supersede PC access. The numbers that
are going to go through these systems are
going to be huge – concurrent users and
concurrent transactions. With J2EE and
products like GemStone/J it’s critical to
have them at the back end to deliver what
we’ve been delivering on the Web.

JDJ: Tell us a little about the role of
the persistent cache architecture that
GemStone has and how that’s a key
player in the wireless.
Chambers: There are two key bits. Dr.
Lougie Anderson, GemStone’s vice presi-
dent of engineering, was talking about
two things we have: a persistent cache
architecture in GemStone and extreme

Java COM

88 SEPTEMBER 2000

Q:
A:Q:

A:

S Y S - C O N R A D I O

clustering. The extreme clustering really
tries to solve all the scalability problems.
Basically, what it’s trying to do is imple-
ment a multivirtual machine architecture
to get around all the scaling issues with
single VM architectures. So you’ve got
scalable garbage collections, scalable
resource management. And it’s robust
and can run for a very long time without
being brought down. That’s what the
extreme clustering gives and that’s what
we’re bringing to wireless, that channel-
neutral platform. We have clients that
actually run dual channels into the same
application – it’s no problem with our
servlet technology. Somebody in the
servlet pages, detecting where your
request is from and just formatting it
slightly differently, it’s not a big chal-
lenge. In terms of the PCA – what the
PCA (the persistent cache) and all in
GemStone is – it’s really a shared cache
where all the VMs can collaborate. It’s
like a community of VMs in a cluster can
actually collaborate and that’s the way
you can put the smartness in. This is
where you can build in protection again
so when people lose their signal on wire-

less applications, the system has to
remember where they were and get back
to a current state and you can do that in
a scalable fashion. PCA is really enabling
that sort of smartness and robustness.

JDJ: Can the PCA, the persistent
cache architecture, keep track of
those transactions and pick up where
they left off?
Chambers: Absolutely. If you take the
Web technology and the wireless WAP
technology, it’s got the concept, it can do
some sessions, so that’s in the cache itself.
Tracking will be done via cookie support
and session support, so when people lose
connections and resume connections
they’ll see what they were previously
doing. What we really need to do, though,
is see the next generation of phones,
because you need smartness at the phone
end as well. When you lose a connection,
the last thing you want to do is lose the
whole service. You want to be able to con-
tinue…you don’t want to lose what you
previously did. That’s a concern there, you
do lose that. When we talk again we can
talk about how the devices are evolving

over the next few years as well and see
how that will change things.

JDJ: There have got to be some cus-
tomers that are driving all these
changes in wireless and this whole
trend. Could you give an indication of
some of the customers that you have
dealt with in Europe as well as the
United States that are driving Gem-
Stone’s movement to the wireless?
Chambers: Yes. What we’re seeing is the
finance industry is moving pretty quickly on
this. Some of the typical applications we
are going with are Internet banking for all
the mobiles. The other thing we’re seeing
is B2B as well, basically for field people
who need status updates at all times. We
have a client here in the States called Build-
scape. Buildscape is actually a B2B
exchange for the building industry, you
know, the building merchants. A lot of peo-
ple are out on sites, and they use their
Palm Pilots and WAP phones, etc. They
actually place orders, check on the status of
things, check on deliveries. Another compa-
ny we’re working with on their wireless
drive is eConnections. They were previous-

ly Marshall Industries. They’re rating similar
things where they’ve got field staffing to
actually have access to the current status
and they’re also tracking just where things
are at, they track where their orders are at
and where deliveries are at in their logistics
system. On the banking side, another com-
pany we’re working with is First Rand in
South Africa. They’re running a dual strate-
gy both with the Web and on wireless
applications. Again, Internet banking, aggre-
gating all the financial services, stuff that
you like to do on the fly, stuff that you
want to do. You don’t want to put on a
whole PC just to make a payment – it’s a
big thing. You just want to switch your
phone on, switch your Palm Pilot on, and
do it there and then. So people like going
down those routes for those sorts of items.

JDJ: We’ll be back again next month
to continue our conversation with
Paul Chambers.

Jason Westra is CTO of Verge Technologies Group,
Inc., and a columnist for JDJ.

jwestra@vergecorp.com

Java COM

90 SEPTEMBER 2000

alexr@fiorano.com

To ease the server-side programming
process, it makes sense to build the
application using a role-based approach:
• Business logic: Determines the con-

tent generated
• Presentation style and content: Deter-

mines how the information is presented

Whether you’re a Java programmer
who wants to work on the server side of
a Web application or a graphic designer
who may be more interested in working
on the client view of the application,
VisualAge for Java and WebSphere Stu-
dio provide the tools you need.

In creating a Web application, it’s
common to create Enterprise JavaBeans
to access the back-end data (the busi-
ness logic side of the application),
servlets to control the flow through the
application, and JavaServer Pages to dis-
play the information to the user (the
presentation style and content of the
application). In this scenario the Java
programmer would concentrate on
developing the EJB and the graphic
designer would concentrate on the JSP
design. Depending on skill or complexi-
ty, both could work on the servlets.

IBM provides VisualAge for Java for
your server-side EJB development and
WebSphere Studio for your client-side
JSP/Servlet development. In Part 1 of this
series we provide you with an overview of
the tools available for Web application
development and how they can be used to
build and debug a complete end-to-end
Web application. In Part 2 we’ll build a
complete Web site from the EJB created in

the article “Building Enterprise Beans with
VisualAge for Java” (JDJ, Vol. 5, issue 6).

Summary of Tools
WebSphere Studio

WebSphere Studio is a suite of tools
that allows everyone on the Web devel-
opment team to work together. It helps
page designers, graphic artists, pro-
grammers and Web masters to work in
such a way that each particular expert in
the field can concentrate on doing his or
her job well. The tools provided with
WebSphere Studio help you to create,
assemble, publish and maintain dynam-
ic interactive Web applications powered
by IBM’s WebSphere Application Server.
Use WebSphere Studio tools to create
HTML, JSP and servlet files.

WebSphere Studio provides the fol-
lowing tools that will be useful for your
client-side development.
• JavaBean Wizard: Allows you to

import a JavaBean and then generate
from it an HTML input page, a servlet
that uses the bean, a servlet configu-
ration file and a JSP file to dynamical-
ly display the results to the user.

• Page Designer: Advanced HTML editor
that allows you to easily edit and create
HTML and JSP files; provides support
for servlets, JavaBeans and JavaScript
so you can integrate these technolo-
gies with the generated client files. Also
provides scripts for you to incorporate
into your Web pages so you don’t have
to write the code yourself.

• WebArt Designer and Animated GIF

Designer: These tools enable you to
create your own images.

VisualAge for Java
VisualAge for Java, an enterprise-

level Java development environment,
provides a complete team-program-
ming environment with all the tools you
need as a professional Java developer.
It’s used to create JavaBeans, complex
servlets and EJB, as well as to run, test
and debug your Web application.

VisualAge for Java provides the fol-
lowing tools for Web-based development.
• WebSphere Test Environment: One of

the biggest reasons to use VisualAge
for Java as a development environ-
ment. This feature is a fully functional
version of WebSphere Application
Server that can run entirely within the
VisualAge for Java IDE. This means
you can run your entire application
within the development environ-
ment, making use of the integrated
tools and debugging support.

As you build the application, you
can configure the WebSphere Test
Environment to match your deploy-
ment platform, including the creation
of multiple Web applications, virtual
paths and aliases. This allows you to
re-create your entire deployment
environment for debugging and test-
ing before you deploy the application.

• EJB server: The EJB development and
test environment was covered in the
June article referenced earlier. It also
allows you to run the WebSphere

V I S U A L A G E R E P O S I T O R Y

Developing Web Applications Using
VisualAge for Java and WebSphere Studio

WRITTEN BY
ANITA HUANG &

TIM DEBOER Y
our team has been assigned to build an end-to-end Web
application. As a Java programmer, you need to focus on
the code, to ensure that it can successfully call the required
data.Your graphic and Web designers need to focus on the
actual presentation to the user, to determine how best to
display the information.

Part 1

Java COM

92 SEPTEMBER 2000

V I S U A L A G E R E P O S I T O R Y

Java COM

94 SEPTEMBER 2000

Advanced EJB server inside VisualAge
for Java.

Figure 1 shows the EJB Server Config-
uration dialog. In the left pane you can
start the Persistent Name Server and
any number of EJB servers. The right
pane shows the EJB groups and EJBs
within the selected server. You can use

this dialog to configure deployment
descriptors for your EJBs and to set up
the properties of the various servers.

To test your EJBs, you can run both the
EJB server and any number of client
applications, all within VisualAge for
Java. If the client application isn’t fin-
ished (or for rapid testing of EJBs), a test

client can be generated automatically.
This test client is a simple application
that allows you to test access to both the
home and remote interfaces of each
EJB. When you want to access the EJBs
from a client application, VisualAge for
Java can generate access EJBs that allow
a client application to connect to your
EJBs without writing any EJB code.

• Integrated Debugger: As with any
program running inside VisualAge for
Java, your Web applications can also
make use of the VisualAge for Java
integrated Debugger. This tool allows
you to debug your servlets, EJBs and
JavaBeans just as you would in any
other application, including setting
breakpoints and setting up watches
on variables. Perhaps the biggest
bonus comes with the incremental
compiler built into the VisualAge for
Java IDE. When you find a bug, you
can fix it and have it compiled direct-
ly into the running code without stop-
ping and restarting the Web or EJB
servers! This feature alone can save
plenty of time during development.

• JSP Execution Monitor: Allows you to
debug JSP pages within the IDE. Fig-
ure 2 shows the JSP Execution Moni-
tor options, which allow you to turn
JSP page debugging on or off and set
which options to use. The highlighted
option, “Retrieve syntax error infor-
mation,” allows you to debug Java
syntax errors in the JSP page.

Figure 3 shows the JSP Execution
Monitor window during execution. In
the top pane are the JSP pages that
have been run inside the Jmonitor.
When these pages are initially com-
piled, the two middle frames show,
respectively, the original JSP page
source and the servlet generated from
that source. As you step through the
page using the toolbar, the current
source is highlighted in both panes,
and the HTML output from this source
is displayed in the bottom pane. With
familiar debugging features like break-
points and step-through, the JSP Exe-
cution Monitor allows you to rapidly
diagnose and fix errors in your JSP
pages, whether they’re Java coding
errors or incorrect output from Jav-
aBeans used by the JSP page.

• • •
Next month we’ll provide a detailed

tutorial that walks you through the steps
involved in developing a Web applica-
tion using VisualAge for Java and Web-
Sphere Studio.

AUTHOR BIOS
Anita Huang is currently

working on IBM’s
WebSphere Developer
Domain site, providing
in-depth samples and

tutorials that incorporate
the WebSphere software
platform for e-business.

Previously, she worked on
the VisualAge for Java

Information Development
team, focusing primarily

on componentry to build
enterprise applications.

Tim deBoer currently
develops tools to build

applications that run on
WebSphere Application

Server. He previously
worked with the VisualAge
for Java Technical Support

group, providing support
to enterprise developers
working with VisualAge

for Java.

FIGURE 1 EJB Server Configuration window

FIGURE 2 Options for JSP Execution Monitor

FIGURE 3 JSP Execution Monitor deboer@ca.ibm.com
anitah@ca.ibm.com

T
he Java 2 Platform, Enterprise Edition (J2EE), especially its

Enterprise JavaBeans technology, provides an industry

standard for the development of distributed enterprise

applications. EJB helps solve a major problem: providing distributed

access to persistent data. But it doesn’t solve a related problem: model-

ing the business processes that applications use to access and

manipulate that data.

Workflow helps solve the problem of modeling and imple-
menting business processes within enterprise applications. It’s just as

important a part of enterprise computing as data persistence and
distribution. EJB models behavior at the object level and limited
interactions with any one client. Workflow models behavior

across objects, applications and even systems, coordinating
multiple clients while externalizing the processes from the code
so they’re easier to understand, change and manage.

In this article I’ll provide an introduction to workflow concepts
and how they relate to developing J2EE-style systems. I’ll adhere
as much as possible to the concepts described by the Workflow

Management Coalition (WfMC) and use terms defined in their glos-
sary. However, because workflow standards are still being developed and
its concepts can be as much opinion as fact, I’ll also describe workflow in
terms of the Java-based workflow automation software I use – the Verve
process engine. In describing workflow I’ll explain how it relates to other
major parts of your system, the components of workflow and two major
styles for using workflow. With this information you’ll be prepared to eval-
uate how you should use workflow as part of your J2EE systems.

Workflow...

J D J F E A T U R E

An introduction to workflow and
workflow management systems

WRITTEN BY BOBBY WOOLF

Java COM

96 SEPTEMBER 2000

What Is Workflow?
The WfMC describes workflow as the

automation of a business process, in whole or
part, during which documents, information or
tasks are passed from one participant to another
for action according to a set of procedural rules.
As a simple example, let’s think about the basics
of processing an insurance claim. Here’s the gist
of how the claims process works:
1. Fill out the claim form.
2. Approve or deny the claim.
3. If approved, send the insured a check.
4. If denied, send the insured a rejection letter.

This simple example could easily be
enhanced to handle improperly filled-out forms,

fraudulent claims and so forth. The activity dia-
gram for this workflow is shown in Figure 1.

This workflow is a process – in this case one
for processing an insurance claim. It contains
four activities, each a task to be performed,
each potentially performed by a different per-
son. The workflow manages a set of informa-
tion passed between the tasks: namely, the
claim form. Besides the activities, the workflow
also contains a decision point that splits the
workflow into two parallel branches –
approved and denied – and decides which
branch to follow. Notice that it specifies what
order the activities should be performed in, but
not what work should be done during each
activity. Workflow is more concerned with link-
ing the activities together than with what work
any particular activity does.

The first function we’ve performed here is to
model the business process. That may seem like
a trivial accomplishment for this simple exam-
ple, but the requirements-gathering and mod-

eling can be the most difficult part of a work-
flow effort. The second function is a question of
how to enact the workflow. Before computers,
workflows were enacted by passing a file folder
of papers from one person’s desk to another.
Today we use computer systems to store the
documents electronically, but we still need a
way to manage the process of passing the doc-
ument from one person’s computer to the next.

Need for Tool Support
The WfMC defines a workflow management

system (WfMS) as a system that defines, cre-
ates and manages the execution of workflows
through the use of software, running on one or
more workflow engines, and is then able to
interpret the process definition, interact with
workflow participants and, where required,
invoke the use of IT tools and applications. A
WfMS manages a workflow in two ways:
1. Process definition
2. Process enactmentFIGURE 1 Insurance claim activity diagram

Fill out
Claim
Form DENIED

AP
PROVED

Approve
Claim

Send
Check

Send Reject
Letter

Approval

Process definition is the act of “coding” the
workflow, defining it in such a way as to describe
what it will do when it runs. Depending on the
WfMS, defining can be implemented through a
declarative coding model or through a visual
programming model (which nonprogrammers
find easier to use). Either way, the resulting work-
flow model is a data structure that can be stored
in XML or any other data format of choice.
Process enactment is the act of running a
process definition, much the way bytecodes are
run by the virtual machine. I’ll discuss the details
of enactment shortly.

Workflow is best handled by embedding a
separate WfMS tool within your application.
The question of why your application needs a
separate workflow tool is similar to asking why
your application needs a separate database
management system. Back when applications
ran on mainframe computers and didn’t share
data, each application contained its own code
to manage its data. But with the need to share
data between applications, distribute it across
networks and manage overhead issues like con-
currency and security, DBMSs evolved. They
help alleviate the need for applications to man-
age their own data. Similarly, workflow man-
agement systems help alleviate the need for
applications to manage their business process-
es. The application can then delegate its busi-
ness processes to the workflow engine, allowing
the application to focus on using the business
processes rather than on implementing them.

Role in Application
A workflow management system is neither a

database management system nor an applica-
tion server, although the three are frequently
used together. Figure 2 shows how a WfMS fits
into a typical system architecture.

The application server manages running
applications and provides clients access to
those applications through understood APIs.
The server doesn’t define the application, but it
does store, execute and provide access to it.
The problem with an application server is that
it doesn’t know how to coordinate a workflow.
It allows a single client to access an application
and coordinates several clients accessing an
application, each within its own session. Work-
flow cuts across these sessions, specifying a
series of such sessions – requiring that when
one session ends, others must be scheduled to
begin, and performing work that occurs out-
side the context of any client sessions.

EJB wasn’t designed to provide workflow
functionality. Entity beans are persistent and

transactional, but they don’t manage the session
state or process, only domain object behavior.
Session beans manage small bits of process, but
only for a single client/server session (usually in
a single thread), and provide poor support for
transactions and persistence. If the application
crashes or is shut down, entity beans preserve
the state, but the session beans don’t remember
what they were doing when they stopped. A ses-
sion bean isn’t designed to coordinate a series of
transactions coordinating multiple clients
through a lengthy process during which the sys-
tem could crash and restart.

A DBMS provides transactions and persis-
tence (which supports the container’s entity
bean implementation), but it doesn’t have a
good way to tie together a common series of
transactions as a workflow. Applications fre-
quently need to perform a series of transactions,
one after another, to implement a process.
Because the DBMS doesn’t help manage this
series of transactions, the responsibility falls on
the application. But because the application
session management has poor persistence and
transactions, it’s not well suited for remember-
ing which transactions have been completed so
far and which still need to be run. Furthermore,
application code that manages such transac-
tions tends to be difficult to understand and
maintain, so the processes they implement
become buried and lost.

This is where a workflow management sys-
tem comes in. It should be persistent and
transactional (often by being implemented on
top of a database management system, or per-
haps as an EJB application), simplify modeling
processes separately from the code that imple-
ments them, and make certain that when each
transaction in a process completes, the next
transaction begins. This frees the application
from these concerns and allows it to concen-
trate on modeling the domain that the DBMS
stores and that the WfMS manipulates.

Workflow Enactment
Previously I mentioned that a process is

defined, then enacted. Enactment is a little
more complicated than simply running the
workflow. Each separate enactment is repre-
sented by a work item. The WfMC defines a
work item as a representation of the work to be
processed (by a workflow participant) in the
context of an activity within a process instance.
When a process is enacted, the WfMS creates a
work item to represent that particular enact-
ment of that particular process. In this way,
when a process is run multiple times (by multi-
ple users or repeatedly by a single user), each
separate run is represented by a work item.

When a WfMS enacts a process, it enacts each
of the process’s activities in the order defined by
the process. Just as enacting a process creates a
work item to represent that enactment, enacting
an activity creates a work item to represent the
execution of that activity. If a particular activity is
enacted several times, such as in a process loop,
each enactment creates a separate work item.

An activity can be automated or manual.
The work item for an automated activity is
managed automatically by the workflow man-
agement system. For example, when a process
work item is created, the WfMS automatically
manages the work item by enacting the
process’s activities. The work item for a manu-
al activity must be managed by an entity exter-
nal to the workflow management system. Such
an entity is usually a person – a user of the
application – which the WfMC calls a partici-
pant (something I’ll discuss later under Orga-
nizational Knowledge).

Manual work items are queued up on work-
lists. Each participant and organizational role
(discussed below) has its own worklist. The items
on a particular worklist represent the work that is
available for the worklist owner to perform. If a
worklist becomes too large, this indicates that the
workflows are producing work requests faster
than the worklist owner can perform them. A
worklist is associated with an owner, not a work-
flow, so a single worklist often gets work items
added to it by several different workflows.

Workflow Components
Now that we know what a workflow is, how

does it fit into a WfMS? And how does it inter-
face with the rest of the application? Workflow
consists of three parts that work together:
1. Organizational knowledge
2. Domain knowledge
3. Process knowledge

The relationship of these three parts is
shown in Figure 3.

Organizational Knowledge
Organizational knowledge is the set of users

of the system and the groups they’re in. Why is
this important to the workflow? Because the
activities of a workflow are performed by peo-
ple, so the workflow management system needs
to know which people are allowed to perform
what activities. Each manual activity is assigned
to an organizational role – a description of the
person within the organization who should
perform this work. The set of people within a
role is defined by users’ permissions and their
interests and responsibilities within the organi-
zation, and the intent of the workflow develop-
er. If an activity should be performed by a par-
ticular person, the role will describe just that
person. The profiles we might define for the
insurance claim example are shown in Table 1.

Each workflow user is represented as a partic-
ipant – someone (or something) capable of per-

Java COM

98 SEPTEMBER 2000

FIGURE 2 Typical system architecture

WORKFLOW
MANAGEMENT

SYSTEM

DATABASE
MANAGEMENT

SYSTEM

APPLICATION
SERVER

FIGURE 3 Workflow components

WORKFLOW RELEVANT DATA ADAPTERSORGANIZATIONAL MODEL ADAPTERS

PROCESS
KNOWLEDGE

ORGANIZATIONAL
KNOWLEDGE

DOMAIN
KNOWLEDGE

forming work defined by an activity. Which activities a participant can per-
form depend on which roles the participant is a member of. If the partici-
pant is a member of a particular role, and an activity is assigned to that role,
then – when that activity is enacted and a work item is created – the partic-
ipant is allowed to perform that work item. If the participant weren’t a mem-
ber of that role, he or she wouldn’t be allowed to perform the work item.

How does the WfMS know who the participants and roles are, and
how they fit together? The WfMS accesses this organizational knowledge
through an organizational model adapter. The model contains the orga-
nization entities (participants and roles) and their relationships. It gets
its data from an external database, usually the databases that the enter-
prise already uses to model its employees and other users, such as LDAP.

Domain Knowledge
Domain knowledge is the business domain that the application mod-

els. In our example the domain is insurance – specifically, claims pro-
cessing. The WfMC distinguishes between application data – domain
data that the workflow management system never uses – and workflow
relevant data (WfRD) – domain data that the WfMS must be able to
access. Most domain data is application data, but what we’re interested
in here is (as its name implies) workflow-relevant data.

A workflow is surprisingly unaware of and uninterested in most of
what’s going on in the domain. This is because a particular activity isn’t
much concerned with what work it represents, only that whatever work it
represents is done when it needs to be done. The WfMS tells the applica-
tion to “do this work now” and the application does it; it’s up to the appli-
cation to decide what it means exactly to do the work. So while the appli-

cation typically needs lots of domain data to perform its work, the work-
flows tend not to be interested. However, workflows are interested in some
domain data, especially to help make decisions within the workflow.

Using our insurance example, after approving or denying the claim,
the workflow then needs to decide whether to send a check or a rejection
letter. How does it decide? The approval activity should have modified the
claim object to set an approved flag. (It may also set an “evaluated by”
field so we know which adjuster approved or denied the claim, but the
workflow isn’t interested in that.) The workflow will look at this flag on the
claim to determine which activity to perform next. When the workflow
accesses the claim as workflow-relevant data, it will typically ignore the
multitude of fields and relationships having to do with who submitted the
claim, the specifics of the claim and so forth. The WfRD will look at the
claim as nothing more than a big approval flag container. The workflow
accesses its workflow-relevant data through a workflow-relevant data
adapter. The adapter gathers the data from within the domain and pre-
sents it to the workflow in a simple way that’s just what the workflow
needs. A single workflow may use several different adapters to access dif-
ferent sets of data, and multiple workflows that want the same data pre-
sented in the same way can share the same adapter code (although they
probably won’t be able to share the same adapter instances).

Process Knowledge
Process knowledge is the set of process definitions. These are the

workflows that the system knows how to run. What’s really interesting
here isn’t so much what process knowledge is, but what it isn’t. Our
insurance workflow example revolves around the insurance claim. The
claim is created by the first activity, and is then used by all the subse-
quent activities. It’s difficult to imagine an activity for this workflow that
wouldn’t somehow use the claim to do its work. Yet the workflow doesn’t
contain the claim. The claim object is domain knowledge, not process
knowledge. The workflow does contain a reference to the claim, a key or
handle that uniquely identifies the claim within the application. This
way, for example, when an adjuster gets a work item to approve a claim,
the application knows which claim to present to him or her for approval.

Similarly, when the workflow assigns the approval activity to the
adjuster role, the workflow has no idea what the adjuster role really
means or who within the organization is allowed to perform adjuster
tasks. When the application asks the WfMS what work is available for a
particular user, the WfMS runs that user’s participant through the orga-
nizational model adapter(s) to determine what roles he or she fulfills. It
then finds the worklists for those roles and tells the application that the
work items on those lists are available for that user.

This separation of responsibilities can be confusing at first, but it’s
ultimately clean and powerful, and one of the strongest advantages of
using a workflow management system. Although the WfMS has its fingers
into lots of organizational and domain knowledge, it really separates the
workflows from that knowledge. Then the workflows can focus on what
work needs to be done and what sorts of people will do it, but workflows
don’t focus on the specific people who will do it or how they’ll do it.

This separation allows the workflow designer to work fairly independent-
ly of the application designer and the LDAP administrator. It focuses the
workflow designer on the work to be done and away from how it will be done.
It allows enterprises to make major changes to their business processes while
minimizing the impact on the applications that enable those processes.

Workflow Styles
In my work with designing workflows I’ve discovered two distinct

approaches to using workflow:
1. User-centric
2. Automation-centric

A particular workflow can use either approach, or a combination of both. In
practice, a workflow may be 100% user-centric, but it’s rarely 100% automation-
centric. Even the most automation-centric architecture still needs some small
portion that’s user-centric – as a last defense for error handling, if nothing else.
In other words, it’s difficult and not very desirable to automate everything.

Java COM

100 SEPTEMBER 2000

TABLE 1 Profiles for workflow activities

INSURANCE CLAIM PROCESS ACTIVITY ORGANIZATIONAL ROLE
Fill out claim form Customer

Approve claim Adjuster
Send check Secretary

Send reject letter Secretary

SYS-CON Media, the world's leading publisher of
Internet technology magazines for developers,
software architects and e-commerce professionals,
becomes the first to serve the rapidly growing

wireless application
development community!

Look for it on
your newsstand
and worldwide
in September!

ANNOUNCING…
Wireless Developer's Journal

www.wireless-journal.com

User-centric
This is the classic workflow approach. A person performs the work for

each manual activity. The person sees the work item on a worklist and
performs the work described by that work item. The person will typical-
ly interact with the application and the WfMS through a GUI (either in an
AWT/Swing-style native window or through an HTML Web browser).
These systems are relatively simple to build. The application developers
have to implement the relevant GUIs for the users and add the code that
lets the GUIs interact not only with the domain but also with the WfMS
through its API. These GUIs then become a client part of the application.

Automation-centric
This is the approach for automating workflow so that large amounts

of work can be performed with a minimum of human intervention. The
work for a manual activity is performed (whenever possible) by an auto-
mated system that’s external to the WfMS and probably external to the
application as well. The external systems interact with the WfMS through
an API. For example, in our insurance claim example the “send check”
and “send reject letter” activities could probably be automated by sys-
tems that print and mail the documents.

Systems that automate activities tend to be more complex than user-
centric ones because of the difficulty in interfacing the WfMS to the
external systems that do the work. The WfMS queues the work on work-
lists, just as it would for people. But whereas people have GUIs that give
them access to those worklists, a typical out-of-the-box back-end system
has no idea how to interface to worklists. They can use the same WfMS
APIs that the GUIs use, but somebody has to write the code to tie togeth-
er the WfMS APIs with the back-end system APIs.

This work can be simplified somewhat by using a messaging system,
such as one that implements the Java Message Service API. This way, WfMS
work requests can be queued as messages and the messaging system then
has to worry about getting the back-end system to perform the messages.
This also allows other systems besides the WfMS to make requests of the
back-end systems in an asynchronous, persistent, transactional way.

The issue is then interfacing the WfMS API to a messaging API. As this
interface code moves work requests between the worklist queues and the
messaging queues, it has to avoid losing or duplicating any of the requests.
Ideally, moving the requests should be performed transactionally, which
requires a two-phase (distributed) transaction between the WfMS and the
messaging system. Many such systems (both workflow and messaging) don’t
support external distributed transactions at this time. Likewise, a work
request will often produce results data that needs to be stored in the database
before the request is considered complete. This involves a three-way distrib-
uted transaction between the messaging, database and workflow systems.

Conclusion
We’ve now seen the importance of workflow and how it relates to the

rest of our application, and basic workflow concepts. Workflow models
business processes, something that applications can’t do well and that
databases can’t do at all. A workflow management system separates the
business process from the applications that hook into the business
processes and manages the execution of those processes. It separates the
process from the organization that performs the work and the domain in
which the work is performed. Finally, a workflow management system
prepares work to be performed by human users or automated systems,
or a combination of both.

Much like database management systems 10 or 20 years ago, the
workflow management systems’ time has come. They are rapidly becom-
ing an indispensable part of an enterprise application architecture.

AUTHOR BIO
Bobby Woolf is a senior architect at GemStone Systems (www.gemstone.com) and a member of their
Advanced Application Architecture Team (www.gemstone.com/javasuccess), where he specializes in workflow
and the application of the Verve process engine (www.verveinc.com) within J2EE applications.

Java COM

102 SEPTEMBER 2000

bobbyw@gemstone.com and woolf@acm.org

ProtoView Launches
PowerChart Java
Component
(Cranbury, NJ) – ProtoView
Development, a leading provider
of component technology, has
released version 1.0 of its new
Java charting component. Power-
Chart is a
rich and
robust set
of integrated JavaBeans that pro-
vides 2D and 3D rendering of a
wide variety of graph types to any
Java application. Further infor-
mation and a comprehensive
new feature list can be found on
the ProtoView Web site at
www.protoview.com.

Quest Software in Alliance
with Siebel Systems
(Irvine, CA) – Quest Software,
Inc., a leading supplier of appli-
cation and information availabil-
ity software, has announced an
alliance with Siebel Systems, Inc.,
a provider of e-business applica-
tion soft-
ware, to
provide
tightly integrated performance,
monitoring and high-availability
solutions for deployment with
Siebel e-business applications for
sales, marketing and customer
relationship management.
www.quest.com

AbriaSoft Announces
MYSQL Database Software
(Fremont, CA) – AbriaSoft has
announced the launch of Abria
MySQL Lite, which reduces the
cumbersome process of installing
and configuring MySQL and
Apache and offers an integrated,
turnkey install of RedHat Package
Modules for MySQL 3.22, Apache
Web Server, PHP3 and Perl. Abria
MySQL Lite is available for unre-
stricted free download from the
company’s Web site.
www.abriasoft.com

Websprocket
Releases JEMIni
(Sunnyvale, CA) – Websprocket, a
provider of software and software
tools for networked devices, has
released JEMIni, a free, open-

source Java
programming
language for

embedded networked systems.
JEMIni includes an array of foun-
dation libraries found in com-
mercial Java distribution and
libraries suitable for device dri-
vers, embedded system design
and embedded system design
automation.
www.websprocket.com

Introducing RoboHELP
Office 9.0
(San Diego, CA) – RoboHELP
Office 9.0 from eHelp Corpora-
tion offers new
and improved
features to sup-
port the creation
of integrated help and user assis-
tance for Web sites and Web serv-
er-based applications.
www.ehelp.com/robohelp

COOL:Joe 1.1, v. 1.1,
on the Market
(Islandia, NY) – Computer Associ-
ates International, Inc.’s new ver-
sion of COOL:Joe is J2EE compli-
ant, ensuring complete support
for the latest standards. New fea-

tures include a task
advisor, Web server
support, a context-
sensitive editor,

enhanced smart expansion and
integration with leading configu-
ration management tools.
www.ca.com

JSmartGrid for the Web
from Eliad
(Paris, France) – Eliad Technolo-
gies, Inc., has released JSmart-
Grid 1.0, the smallest Swing grid

component (162 KB) specifically
designed for the Java 2 Platform
v1.3.0. JSmartGrid’s extensive API
with its scalable presentation
abilities simplifies design for
Web, database and B2B applica-
tions and gives developers more
flexibility in displaying all types
of data, including XML docu-
ments. A free evaluation copy can
be downloaded from the Eliad
Web site.
www.eliad.com

GemStone Teams
with RSW Software
(Beaverton, OR) – GemStone Sys-
tems, Inc., and RSW Software,
Inc., have formed a strategic
alliance that provides tools for
load testing and optimizing the
performance of enterprise appli-
cations from development
through
deploy-
ment. As a
result of the
partnership, GemStone and its
customers can use RSW’s e-TEST
suite and EJB-test to analyze the
scalablity and functionality of
enterprise-class applications
built on the GemStone/J 4.0
application server using Java 2
Platform, Enterprise Edition.
www.gemstone.com

Allaire Licenses Sun’s J2EE
(Newton, MA) – Allaire Corpora-
tion, in a strategic alliance with
Sun Microsystems, Inc., will for-
mally license Sun’s Java 2 Plat-
form, Enterprise Edition.

Allaire is currently incorporat-
ing the J2EE technology into its
new Java
Applica-
tion Serv-
er, JRun 3.0, announced at
JavaOne. JRun 3.0 is a full, clean-
room implementation of the J2EE
specifications and a key compo-
nent of the Allaire Business Plat-
form.
www.allaire.com

Macromedia
Unleashes Flash 5
(San Francisco, CA) – Flash 5, the
latest version of the product for
producing high-
impact Web experi-
ences, will soon be
available from Macromedia.
Flash 5 includes new creative
tools, “seamless integration” with
Macromedia FreeHand and Fire-
works, ActionScript, a JavaScript-
like language for creating interac-
tivity, and support for XML data
interchange.

A new Bezier pen tool com-
plements the product’s natural
drawing tools and
enables traditional
illustrators accus-
tomed to technical
drawing tools to work
easily within the authoring envi-
ronment.
www.macromedia.com

(Santa Clara, CA) – WebGain, Inc., is shipping its
flagship product, WebGain Studio, an integrated e-
commerce development environment that enables
developers to rapidly build Java component-based
e-commerce applications. WebGain Studio builds
on industry-leading tools and technologies
acquired from Symantec, Tendril Software and The
Object People, and licensed from Macromedia.
www.webgain.com

WebGain, Inc., is also introducing WebGain
TopLink v 2.5 for BEA Systems application servers,
BEA WebLogic Server 5.1 and BEA WebLogic Enter-
prise 5.1.

Compatible with Java 2 Platform, Enterprise
Edition application servers, the product frees Java
developers from the rigors of integrating object-

oriented applications
with non-object data
sources such as rela-
tional databases. By

integrating TopLink with BEA WebLogic Server,
developers can efficiently build components for
application servers that run on Java, while signifi-
cantly cutting application development time and
expense.
www.webgain.com

WebGain Studio Available,New Version of
WebGain’s TopLink for BEA WebLogic

Java COM

104 SEPTEMBER 2000

Java COM

106 SEPTEMBER 2000

BEA First Independent
Company to Achieve
J2EE Certification
(San Jose, CA) – BEA Systems,
Inc.’s WebLogic family of applica-
tion servers has successfully
completed Sun Microsystems’
J2EE certification, the industry’s
only J2EE-com-
prehensive test
suite for assess-
ing compliance
with the J2EE
specifications.
This milestone validates BEA’s
continuing and rigorous adher-
ence to J2EE.
www.bea.com

JDJ Editor-in-Chief
Joins Verge Board
(Boulder, CO) – Verge
Technologies Group,
Inc., a J2EE consulting and host-
ing firm specializing in Enter-
prise JavaBeans, has named Sean
Rhody, editor-in-chief of Java
Developer's Journal, to its board
of advisors.

A former CIO and successful
consultant in the B2B NetMarket
industry responsible for the
architecture of several leading
B2B exchange sites, Rhody is a
respected industry expert and
frequent speaker at Java events
and conferences.

Jason Westra, CTO of Verge
and editor of JDJ’s EJB Home col-
umn, stated: “We are excited to
have Sean’s skills and technical
vision behind us as we continue
to lead the industry in J2EE ven-
tures….”

“I think Verge brings the
depth of knowledge and commit-
ment to excellence around J2EE
that will allow the company to
differentiate itself from the com-
petition. Verge’s ejip.net offering,
the first of its kind in the indus-
try, shows the depth of thinking
and the versatility of the organi-
zation,” said Rhody.
www.vergecorp.com

Holt New Head of
Secant Technologies
(Cleveland, OH) – Former Com-
puter Associates senior vice pres-
ident and general manager Jim
Holt has been named Secant’s
new presi-
dent. Holt
takes the
reins at
Secant with more than 20 years
in leadership positions at innova-
tive technology and system inte-
gration companies and an
impressive record of accomplish-
ment in building global organiza-
tions.

In his new role Holt will man-
age Secant’s worldwide opera-
tions from the company’s head-
quarters in
Cleveland. He
will work
closely with
CEO John Schwalm to provide
overall leadership, build opera-
tions, penetrate vertical markets
and identify new opportunities
for the company.
www.secant.com

(Monrovia, CA / New City, NY) – ParaSoft, which
provides software error prevention and error
detection solutions, has announced a partnership
with CodeMarket, a global software development
network where software developers and develop-
ment managers can find and
purchase both free-lance
development work and ready-

to-run Java components. The partner-
ship was developed to bring more
certainty to the marketplace for out-
sourced software component devel-

opment. ParaSoft’s Jtest will be the standard tool
by which all components outsourced or purchased
through CodeMarket will be tested.
www.parasoft.com www.codemarket.net

ParaSoft Partners with CodeMarket

codemarketcodemarketcodemarketSM

Eliad Technologies is a young company
with a mission: to bring data visualization
components to the Java community in a very
small footprint (i.e., 162KB).

The fruit of their labor is JSmartGrid, the
smallest Swing grid component designed
specifically for the Java 2 Platform version
1.3.0. JSmartGrid can visualize data in
tables, grids and spreadsheets. It was intro-
duced in June at JavaOne 2000 and at the
XML DevCon 2000 in New York City.

A product evaluation CD-ROM was also
distributed at both shows, but Eliad Tech-
nologies provides an updated download-
able version of 1.0 on their Web site.

Features
The JSmartGrid, a Swing component

and a bean, installs easily on every IDE
loading bean such as JBuilder 3.5 and
Forté. The only other requirement is the
JDK Java 2 Platform version 1.3.0 or JRE
Java 2 Platform version 1.3.0; they can
be downloaded from Sun Microsystems’
Web site, www.sun.com.

JSmartGrid offers a wide range of
features that make their product quite
attractive. This 100% Java Swing com-
ponent allows the display of data as
text, numbers, graphics and images in
GIF or JPEG format, or as Swing compo-
nents such as buttons and combo-
boxes. Such flexibility enables you to
replace your old static HTML tables
with new dynamic Java tables that allow
users to edit, reformat and sort data.
You can’t do that with lame HTML code!
With JSmartGrid you have the flexibility

to define the content and the behavior of every
individual cell in your spreadsheet. A unique
feature is the ability to drag cells, rows and
columns and to merge cells into bigger rectan-
gular arrays called spans.

On the technical side JSmartGrid simplifies
application design through its flexible models
(data, span and style) and offers improvements
in performance on the client side thanks to its
integration with the Java 2 Platform v1.3.0. If
you’re familiar with the JTable Swing compo-
nent from Sun, you shouldn’t experience much
difficulty getting started with this component.
Last but not least is its ability to connect to data
though JDBC and to display XML documents.

Impressions
JSmartGrid is a good, stable product proving

once more that a small company can compete in
the big leagues. Their product is innovative and
useful since they provide features that competi-
tive products lack. What impressed me most is the
quality of the documentation, which is exhaus-
tive. Every class is documented in the format used
by Sun and O’Reilly & Associates with complete
hyperlinks in a tree fashion. In addition, you can
download examples, documentation and tutori-
als from their Web site, which should make learn-
ing the product much easier.

JSmartGrid 1.0, Eliad Technologies, Inc.
19925 Stevens Creek Blvd, Cupertino, CA 95014

Web: www.eliad.com • Phone: 408 973-7216 • E-mail: info@eliad.com

Test Environment: Pentium II 350MHz, 128MB RAM, 26GB disk drive,
Windows NT Workstation 4.0 SP6 • Pricing: $179.00

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

bruno@sys-con.com

AUTHOR BIO
Bruno Y. Decaudin has accumulated 20 years’ experience in the
computer field in Europe and the U.S., where he settled down.
A graduate of the EDHEC in France, Bruno worked for major

corporations and consulting firms before creating his own
company in 1991, focusing first on application development

and then on network design and Internet development.

JSmartGrid
1.0

by Eliad Technologies, Inc.

Java COM

134 SEPTEMBER 2000

REVIEWED BY BRUNO Y. DECAUDIN

